Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Adv Sci (Weinh) ; : e2406309, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076120

RESUMO

Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.

2.
PeerJ ; 11: e15618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377789

RESUMO

Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Luteolina , Suínos , Animais , Luteolina/farmacologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oogênese , Oócitos , Suplementos Nutricionais , Mamíferos
3.
Toxicol In Vitro ; 91: 105615, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207789

RESUMO

Cadmium (Cd) is toxic metal that can induce various diseases, such as cardiovascular, nervous, and reproductive systems. This study investigated the effect of Cd exposure on porcine oocyte maturation and the underlying mechanism. Porcine cumulus-oocyte complexes were exposed various Cd concentration and tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress during in vitro maturation (IVM). After IVM, we evaluated meiotic maturation, ER stress, and oocyte quality by Cd exposure. Cd exposure inhibited cumulus cell expansion and meiotic maturation, increased oocyte degeneration, and induced ER stress. The levels of spliced XBP1 and ER stress-associated transcripts, markers of ER stress, were elevated in Cd-treated cumulus-oocyte complexes and denuded oocytes during IVM. Moreover, Cd-induced ER stress impaired oocyte quality by disrupting mitochondrial function and elevating intracellular reactive oxygen species levels while decreasing ER function. Interestingly, TUDCA supplementation significantly decreased the expression of ER stress-related genes and increased the quantity of ER compared with the Cd treatment. Additionally, TUDCA was also able to rescue excessive levels of ROS and restore normal mitochondrial function. Moreover, the addition of TUDCA under Cd exposure greatly ameliorated Cd-mediated detrimental effects on meiotic maturation and oocyte quality, including cumulus cell expansion and MII rate. These findings suggest that Cd exposure during IVM impairs the meiotic maturation of oocytes by inducing of ER stress.


Assuntos
Cádmio , Técnicas de Maturação in Vitro de Oócitos , Animais , Suínos , Cádmio/toxicidade , Cádmio/metabolismo , Oócitos , Estresse do Retículo Endoplasmático
4.
Toxicology ; 480: 153314, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084880

RESUMO

Arsenic (AS), an environmental contaminant, is a known human carcinogen that can cause cancer of the lung, liver, and skin. Furthermore, AS induces oxidative stress and mitochondrial impairments in mammalian cells. However, limited information is available on the effect of AS exposure on oocyte maturation of porcine, whose anatomy, physiology, and metabolism are similar to those of human. Therefore, we examined the effect of AS exposure on the in vitro maturation (IVM) of porcine oocytes and the possible underlying mechanisms. Cumulus-cell enclosed oocytes were cultured with or without AS for maturation, and then were used for analyses. This study indicated that AS under a concentration of 1 µM significantly increased the abnormal expansion of cumulus cells and the number of oocytes maintained in meiotic arrest. In addition, AS exposure significantly reduced subsequent development of embryos and increased the rate of apoptosis of blastocysts following parthenogenetic activation (PA) and in vitro fertilization (IVF). Moreover, AS exposure induced oxidative stress with increased reactive oxygen species (ROS), and decreased glutathione (GSH), leading to reduced mitochondrial membrane potential, mitochondrial quantity, DNA damage, excessive autophagy activity, and early apoptosis in porcine oocytes. Taken together, the results demonstrated that AS exposure exerts several negative effects, such as meiotic defects and embryo developmental arrest by causing mitochondrial dysfunction and apoptosis via inducing oxidative stress.


Assuntos
Arsênio , Técnicas de Maturação in Vitro de Oócitos , Animais , Apoptose , Arsênio/metabolismo , Blastocisto , Carcinógenos/metabolismo , Desenvolvimento Embrionário , Feminino , Glutationa/metabolismo , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Mamíferos/metabolismo , Mitocôndrias , Oócitos , Estresse Oxidativo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Suínos
5.
Andrology ; 10(2): 340-353, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34499811

RESUMO

BACKGROUND: Cryopreservation can expand the usefulness of spermatogonial stem cells (SSCs) in various fields. However, previous investigations that have attempted to modulate cryoinjury-induced mechanisms to increase cryoprotective efficiency have mainly focused on apoptosis and necrosis. OBJECTIVES: This study aimed to establish an effective molecular-based cryoprotectant for SSC cryopreservation via autophagy modulation. MATERIALS AND METHODS: To determine the efficacy of autophagy modulation, we assessed the recovery rate and relative proliferation rate and performed western blotting for the determination of autophagy flux, immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization, and spermatogonial transplantation for in vivo SSC functional activity. RESULTS: The results showed that a basal level of autophagy caused a higher relative proliferation rate (pifithrin-µ 0.01 µM, 184.2 ± 11.2%; 3-methyladenine 0.01 µM, 175.3 ± 10.3%; pifithrin-µ 0.01 µM + 3-methyladenine 0.01 µM, P3, 224.6 ± 22.3%) than the DMSO control (100 ± 6.2%). All treatment groups exhibited normal characteristics, suggesting that these modulators could be used as effective cryoprotectants without changing the properties of the undifferentiated germ cells. According to the results of the in vivo spermatogonial transplantation assay, the colonies per total number of cultured SSCs was significantly higher in the pifithrin-µ 0.01 µM (1596.7 ± 172.5 colonies), 3-methyladenine 0.01 µM (1522.1 ± 179.2 colonies), and P3 (1727.5 ± 196.5 colonies) treatment groups than in the DMSO control (842.8 ± 110.08 colonies), which was comparable to that of the fresh control (1882.1 ± 132.1 colonies). DISCUSSION: A basal level of autophagy is more essential for resilience in frozen SSCs after thawing, rather than the excessive activation or inhibition of autophagy. CONCLUSION: A basal level of autophagy plays a critical role in the pro-survival response of frozen SSCs after thawing; herein, a new approach by which SSC cryoprotective efficiency can be improved was identified.


Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Criopreservação , Crioprotetores/farmacologia , Espermatogônias/citologia , Animais , Masculino , Camundongos
6.
Redox Biol ; 48: 102190, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798428

RESUMO

Cancer stem cells (CSCs) initiate tumor formation and are known to be resistant to chemotherapy. A metabolic alteration in CSCs plays a critical role in stemness and survival. However, the association between mitochondrial energy metabolism and the redox system remains undefined in colon CSCs. In this study, we assessed the role of the Sulfiredoxin-Peroxiredoxin (Srx-Prx) redox system and mitochondrial oxidative phosphorylation (OXPHOS) in maintaining the stemness and survival of colon CSCs. Notably, Srx contributed to the stability of PrxI, PrxII, and PrxIII proteins in colon CSCs. Increased Srx expression promoted the stemness and survival of CSCs and was important for the maintenance of the mitochondrial OXPHOS system. Furthermore, Nrf2 and FoxM1 led to OXPHOS activation and upregulated expression of Srx-Prx redox system-related genes. Therefore, the Nrf2/FoxM1-induced Srx-Prx redox system is a potential therapeutic target for eliminating CSCs in colon cancer.

7.
J Biol Res (Thessalon) ; 28(1): 22, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814951

RESUMO

BACKGROUND: Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress induced by several factors. They regulate several signaling pathways, such as metabolism, immune response, and intracellular reactive oxygen species (ROS) homeostasis. Epithelial-mesenchymal transition (EMT) is a transforming process that induces the loss of epithelial features of cancer cells and the gain of the mesenchymal phenotype. The EMT promotes metastasis and cancer cell progression mediated by several pathways, such as mitogen-activated protein kinases (MAPKs) and epigenetic regulators. METHODS: We used Prx6 overexpressed and downregulated HCT116 cells to study the mechanism between Prx6 and colon cancer. The expression of Prx6, GAPDH, Snail, Twist1, E-cadherin, Vimentin, N-cadherin, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected by Western blotting. Additionally, an animal study for xenograft assay was conducted to explore the function of Prx6 on tumorigenesis. Cell proliferation and migration were determined by IncuCyte Cell Proliferation and colony formation assays. RESULTS: We confirmed that the expression of Prx6 and EMT signaling highly occurs in HCT116 compared with that in other colon cancer cell lines. Prx6 regulates the EMT signaling pathway by modulating EMT-related transcriptional repressors and mesenchymal genes in HCT116 colon cancer cells. Under the Prx6-overexpressed condition, HCT116 cells proliferation increased significantly. Moreover, the HCT116 cells proliferation decreased in the siPrx6-treated cells. Eleven days after HCT116 cell injection, Prx6 was overexpressed in the HCT116-injected mice, and the tumor volume increased significantly compared with that of the control mice. Furthermore, Prx6 regulates EMT signaling through p38 phosphorylation in colon cancer cells. CONCLUSION: We suggested that Prx6 regulates EMT signaling pathway through p38 phosphorylation modulation in HCT116 colon cancer cells.

8.
Cells ; 10(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440805

RESUMO

Vascularization of tissues, organoids and organ-on-chip models has been attempted using endothelial cells. However, the cultured endothelial cells lack the capacity to interact with other somatic cell types, which is distinct from developing vascular cells in vivo. Recently, it was demonstrated that blood vessel organoids (BVOs) recreate the structure and functions of developing human blood vessels. However, the tissue-specific adaptability of BVOs had not been assessed in somatic tissues. Herein, we investigated whether BVOs infiltrate human cerebral organoids and form a blood-brain barrier. As a result, vascular cells arising from BVOs penetrated the cerebral organoids and developed a vessel-like architecture composed of CD31+ endothelial tubes coated with SMA+ or PDGFR+ mural cells. Molecular markers of the blood-brain barrier were detected in the vascularized cerebral organoids. We revealed that BVOs can form neural-specific blood-vessel networks that can be maintained for over 50 days.


Assuntos
Vasos Sanguíneos/fisiologia , Encéfalo/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Organoides/irrigação sanguínea , Vasos Sanguíneos/citologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio/citologia , Endotélio/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Organoides/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233448

RESUMO

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.


Assuntos
Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Pâncreas/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/genética , Suínos , Porco Miniatura
10.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456265

RESUMO

Parabens are widely used in personal care products due to their antimicrobial effects. Although the toxicity of parabens has been reported, little information is available on the toxicity of butylparaben (BP) on oocyte maturation. Therefore, we investigated the effects of various concentrations of BP (0 µM, 100 µM, 200 µM, 300 µM, 400 µM, and 500 µM) on the in vitro maturation of porcine oocytes. BP supplementation at a concentration greater than 300 µM significantly reduced the proportion of complete cumulus cell expansion and metaphase II oocytes compared to the control. The 300 µM BP significantly decreased fertilization, cleavage, and blastocyst formation rates with lower total cell numbers and a higher rate of apoptosis in blastocysts compared to the control. The BP-treated oocytes showed significantly higher reactive oxygen species (ROS) levels, and lower glutathione (GSH) levels than the control. BP significantly increased the aberrant mitochondrial distribution and decreased mitochondrial function compared to the control. BP-treated oocytes exhibited significantly higher percentage of γ-H2AX, annexin V-positive oocytes and expression of LC3 than the control. In conclusion, we demonstrated that BP impaired oocyte maturation and subsequent embryonic development, by inducing ROS generation and reducing GSH levels. Furthermore, BP disrupted mitochondrial function and triggered DNA damage, early apoptosis, and autophagy in oocytes.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Parabenos/toxicidade , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Glutationa , Oócitos/efeitos dos fármacos , Parabenos/efeitos adversos , Espécies Reativas de Oxigênio , Sus scrofa/embriologia , Sus scrofa/fisiologia
11.
In Vivo ; 34(1): 133-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31882472

RESUMO

BACKGROUND/AIM: Dermal mesenchymal stem cells (DMSCs) are pluripotent stem cells found in the skin which maintain the thickness of the dermal layer and participate in skin wound healing. MATERIALS AND METHODS: The MTT assay was performed to detect cell proliferation and cell-cycle progression and cell-surface markers were assessed by flow cytometry. The levels of proteins in related signaling pathways were detected by western blotting assay and the translocation of ß-catenin into the nucleus were detected by immunofluorescence. Red oil O staining was performed to examine the differentiational ability of DMSCs. RESULTS: Knockout of PRDX2 inhibited DMSC cell growth, and cell-cycle arrest at G0/G1 phase; p16, p21 and cyclin D1 expression levels in Prdx2 knockout DMSCs were significantly increased. Furthermore, AKT phosphorylation were significantly increased in Prdx2 knockout DMSCs, GSK3ß activity were inhibited, result in ß-Catenin accumulated in the nucleus. CONCLUSION: In conclusion, these results demonstrated that PRDX2 plays a pivotal role in regulating the proliferation of DMSCs, and this is closely related to the AKT/glycogen synthase kinase 3 beta/ß-catenin signaling pathway.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Fase G1/genética , Células-Tronco Mesenquimais/patologia , Peroxirredoxinas/genética , Fase de Repouso do Ciclo Celular/genética , Transdução de Sinais/genética , Animais , Apoptose/genética , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Camundongos Knockout , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , beta Catenina/genética
12.
Reproduction ; 158(6): 543-554, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652418

RESUMO

The developmental competence of in vitro-matured oocytes is still lower than that of the in vivo-matured oocytes due to precocious meiotic resumption and inappropriate cytoplasmic maturation. Although numerous efforts have been attempted to accomplish better in vitro maturation (IVM) condition, only limited progress has been achieved. Thus, a current study was conducted to examine the effects of 6-diazo-5-oxo-l-norleucine (DON, an inhibitor of hyaluronan synthesis) during the first half period of IVM on nuclear/cytoplasmic maturation of porcine oocytes and subsequent embryonic development. Based on the observation of the nucleus pattern, metaphase II (MII) oocyte production rate in 1 µM DON group was significantly higher than other groups at 44 h of IVM. The 1 µM of DON was suggested to be optimal for porcine IVM and was therefore used for further investigation. Meiotic arrest effect of DON was maximal at 6 h of IVM, which was supported by the maintenance of significantly higher intra-oocyte cAMP level. In addition, increased pERK1/2 levels and clear rearrangement of cortical granules in membrane of MII oocytes matured with DON provided the evidence for balanced meiosis progression between nuclear and cytoplasmic maturation. Subsequently, DON significantly improved blastocyst formation rate, total cell numbers, and cellular survival in blastocysts after parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Altogether, our results showed for the first time that 1 µM DON can be used to increase the yield of developmentally competent MII oocytes by synchronizing nuclear/cytoplasmic maturation, and it subsequently improves embryo developmental competence.


Assuntos
Núcleo Celular/fisiologia , Citoplasma/fisiologia , Diazo-Oxo-Norleucina/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Meiose , Oócitos/citologia , Animais , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Feminino , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Transferência Nuclear , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Gravidez , Suínos
13.
In Vivo ; 33(4): 1183-1192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31280208

RESUMO

BACKGROUND/AIM: Peroxiredoxin (Prx) protein family is aberrantly expressed in various cancers including gastric cancer. Among the six family members, Prx V has been known as an antioxidant enzyme which scavenges intracellular reactive oxygen species (ROS) and modulates cellular apoptosis. This study aimed at investigating the role of Prx V in apoptosis of gastric cancer cells. MATERIALS AND METHODS: Stably constructed Prx V knockdown, over-expression and mock AGS cells (a human gastric adenocarcinoma cell line) were used to study the effect of Prx V on emodin-induced apoptosis by western blotting, cell viability, apoptosis and ROS detection assays. RESULTS: Overexpression of Prx V significantly decreased emodin-induced cellular apoptosis and ROS levels compared to Mock and Prx V knockdown AGS cells. Also, overexpression of Prx V down-regulated the expression of pro-apoptotic proteins, Bad and cleaved PARP, and increased the expression of anti-apoptotic protein, Bcl2. CONCLUSION: Prx V suppresses AGS cell apoptosis via scavenging intracellular ROS and modulating apoptosis-related markers.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Emodina/farmacologia , Peroxirredoxinas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Imunofluorescência , Expressão Gênica , Humanos , Peroxirredoxinas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
14.
Biol Reprod ; 101(2): 360-367, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187129

RESUMO

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis in male due to their capability to multiply in numbers by self-renewal and subsequent meiotic processes. However, as SSCs are present in a very small proportion in the testis, in vitro proliferation of undifferentiated SSCs will facilitate the study of germ cell biology. In this study, we investigated the effectiveness of various cell lines as a feeder layer for rat SSCs. Germ cells enriched for SSCs were cultured on feeder layers including SIM mouse embryo-derived thioguanine and ouabain-resistant cells, C166 cells, and mouse and rat testicular endothelial cells (TECs) and their stem cell potential for generating donor-derived colonies and offspring was assessed by transplantation into recipient testes. Rat germ cells cultured on TECs showed increased mRNA and protein levels of undifferentiated spermatogonial markers. Rat SSCs derived from these germ cells underwent spermatogenesis and generated offspring when transplanted into recipients. Collectively, TECs can serve as an effective feeder layer that enhances the proliferative and self-renewal capacity of cultured rat SSCs while preserving their stemness properties.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Células Endoteliais/fisiologia , Testículo/citologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Transplante de Células , Células Alimentadoras , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
15.
Int J Stem Cells ; 12(2): 240-250, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31242719

RESUMO

BACKGROUND AND OBJECTIVES: Proficient differentiation of human pluripotent stem cells (hPSCs) into specific lineages is required for applications in regenerative medicine. A growing amount of evidences had implicated hormones and hormone-like molecules as critical regulators of proliferation and lineage specification during in vivo development. Therefore, a deeper understanding of the hormones and hormone-like molecules involved in cell fate decisions is critical for efficient and controlled differentiation of hPSCs into specific lineages. Thus, we functionally and quantitatively compared the effects of diverse hormones (estradiol 17-ß (E2), progesterone (P4), and dexamethasone (DM)) and a hormone-like molecule (retinoic acid (RA)) on the regulation of hematopoietic and neural lineage specification. METHODS AND RESULTS: We used 10 nM E2, 3 µM P4, 10 nM DM, and 10 nM RA based on their functional in vivo developmental potential. The sex hormone E2 enhanced functional activity of hematopoietic progenitors compared to P4 and DM, whereas RA impaired hematopoietic differentiation. In addition, E2 increased CD34+CD45+ cells with progenitor functions, even in the CD43- population, a well-known hemogenic marker. RA exhibited lineage-biased potential, preferentially committing hPSCs toward the neural lineage while restricting the hematopoietic fate decision. CONCLUSIONS: Our findings reveal unique cell fate potentials of E2 and RA treatment and provide valuable differentiation information that is essential for hPSC applications.

16.
Int J Mol Sci ; 20(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159489

RESUMO

Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.


Assuntos
Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/terapia , Animais , Gerenciamento Clínico , Diagnóstico Precoce , Humanos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Transplante de Fígado , Terapia de Alvo Molecular
17.
Theriogenology ; 132: 172-181, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029848

RESUMO

Undifferentiated germ cells, including spermatogonial stem cells (SSCs), make up only a very small proportion of germ cells within the testis; for example, 0.03% of germ cells in the mouse testis are SSCs. In this study, we investigated the characteristics of bovine undifferentiated germ cells and developed an enrichment procedure for these cells on the basis of fluorescence-activated cell sorting (FACS), using the specific cell surface marker glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1). FACS analysis showed that only 0.6% of the total testicular cells were GFRα1-positive. These GFRα1-positive cells had a significantly higher expression of UCHL1, ZBTB16, and DDX4 (all markers of undifferentiated spermatogonial and germ cells) than that of fresh testicular cells. Quantitative reverse-transcription PCR analyses also indicated that the gene expression of BCL6B and NANOS2 was significantly higher in GFRα1-positive cells. Furthermore, xenogeneic transplantation of bovine testicular cells into immunodeficient mice resulted in 4.4-fold more colonies of GFRα1-positive cells than those of fresh testicular cells, indicating that FACS with antibodies to GFRα1 had efficiently enriched putative SSCs from total testicular cells. Collectively, these results demonstrate that GFRα1 could be used as a marker of bovine undifferentiated germ cells, including putative SSCs, and that its expression on SSCs has important implications for the further development of techniques for enriching stem cells from other species.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Membrana/metabolismo , Espermatogônias/metabolismo , Animais , Biomarcadores , Bovinos , Regulação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Maturidade Sexual , Transplante Heterólogo
18.
Int J Mol Med ; 43(5): 2230-2240, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864673

RESUMO

Hair follicles (HFs) are a well­characterized niche for adult stem cells (SCs), and include epithelial and melanocytic SCs. HF cells are an accessible source of multipotent adult SCs for the generation of the interfollicular epidermis, HF structures and sebaceous glands in addition to the reconstitution of novel HFs in vivo. In the present study, it was demonstrated that HF cells are able to be induced to differentiate into cardiomyocyte­like cells in vitro under specific conditions. It was determined that HF cells cultured on OP9 feeder cells in KnockOut­Dulbecco's modified Eagle's medium/B27 in the presence of vascular endothelial growth factors differentiated into cardiomyocyte­like cells that express markers specific to cardiac lineage, but do not express non­cardiac lineage markers including neural stem/progenitor cell, HF bulge cells or undifferentiated spermatogonia markers. These cardiomyocyte­like cells exhibited a spindle­ and filament­shaped morphology similar to that presented by cardiac muscles and exhibited spontaneous beating that persisted for over 3 months. These results demonstrate that SC reprogramming and differentiation may be induced without resulting in any genetic modification, which is important for the clinical applications of SCs including tissue and organ regeneration.


Assuntos
Folículo Piloso/citologia , Miócitos Cardíacos/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Células Alimentadoras/citologia , Células Alimentadoras/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Fator A de Crescimento do Endotélio Vascular/farmacologia
19.
Cell Death Differ ; 26(9): 1582-1599, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30464227

RESUMO

Despite numerous studies on the molecular switches governing the conversion of stemness to differentiation in embryonic stem cells (ESCs), little is known about the involvement of the retromer complex. Under neural differentiation conditions, Vps26a deficiency (Vps26a-/-) or knockdown suppressed the loss of stemness and subsequent neurogenesis from ESCs or embryonic carcinoma cells, respectively, as evidenced by the long-lasting expression of stemness markers and the slow appearance of neuronal differentiation markers. Interestingly, relatively low reactive oxygen species (ROS) levels were generated during differentiation of Vps26a-/- ESCs, and treatment with an antioxidant or inhibitor of NADPH oxidase (Nox), a family of ROS-generating enzymes, led to restoration of stemness in wild-type cells to the level of Vps26a-/- cells during neurogenesis. Importantly, a novel interaction between Vps26a and Nox4 linked to the activation of ERK1/2 depended highly on ROS levels during neurogenesis, which were strongly suppressed in differentiating Vps26a-/- ESCs. Moreover, inhibition of phosphorylated ERK1/2 (pERK1/2) resulted in decreased ROS and Nox4 levels, indicating the mutual dependency between pERK1/2 and Nox4-derived ROS during neurogenesis. These results suggest that Vps26a regulates stemness by actively cooperating with the Nox4/ROS/ERK1/2 cascade during neurogenesis. Our findings have important implications for understanding the regulation of stemness via crosstalk between the retromer molecule and redox signaling, and may contribute to the development of ESC-based therapeutic strategies for the mass production of target cells.


Assuntos
NADPH Oxidase 4/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Proteínas de Transporte Vesicular/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Cancer Immunol Res ; 7(2): 219-229, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30514792

RESUMO

Natural killer (NK) cells are primary immune cells that target cancer cells and can be used as a therapeutic agent against pancreatic cancer. Despite the usefulness of NK cells, NK-cell therapy is limited by tumor cell inhibition of NK-cell homing to tumor sites, thereby preventing a sustained antitumor immune response. One approach to successful cancer immunotherapy is to increase trafficking of NK cells to tumor tissues. Here, we developed an antibody-based NK-cell-homing protein, named NK-cell-recruiting protein-conjugated antibody (NRP-body). The effect of NRP-body on infiltration of NK cells into primary and metastatic pancreatic cancer was evaluated in vitro and in murine pancreatic ductal adenocarcinoma models. The NRP-body increased NK-cell infiltration of tumors along a CXCL16 gradient (CXCL16 is cleaved from the NRP-body by furin expressed on the surface of pancreatic cancer cells). CXCL16 induced NK-cell infiltration by activating RhoA via the ERK signaling cascade. Administration of the NRP-body to pancreatic cancer model mice increased tumor tissue infiltration of transferred NK cells and reduced the tumor burden compared with that in controls. Overall survival of NRP-body-treated mice (even the metastasis models) was higher than that of mice receiving NK cells alone. In conclusion, increasing NK-cell infiltration into tumor tissues improved response to this cancer immunotherapy. The combination of an NRP-body with NK-cell therapy might be useful for treating pancreatic cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Animais , Linhagem Celular Tumoral , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Terapia Combinada , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imunoconjugados/farmacologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/metabolismo , Camundongos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA