Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368967

RESUMO

High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Metais Pesados , Biodegradação Ambiental , Óleo de Milho , Zea mays , Ecossistema , Bactérias , Ácidos , Sulfatos , Carbono , Sulfetos
2.
Bioresour Technol ; 275: 314-320, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30594842

RESUMO

This study presents the effects of nanoscale zero valent iron (nZVI) concentration on the biomethanation of gaseous CO2. During anaerobic batch experiment with 9 times injection of CO2, the CO2 concentration in the headspace rapidly decreased by dissolution. Then, when nZVI was added at 6.25 and 12.5 g/L, the dissolved CO2 was biochemically transformed into CH4 at a maximum production rate of 2.38 and 3.93 µmol/hr, respectively. Biomethanation at these two nZVI concentrations continued until the end of experiment. In spite of more H2 evolution by nZVI at 25 g/L, biomethanation did not occur, due to the significant inhibition of methanogenesis by nZVI. As the nZVI concentration increased, relative abundance of the hydrogenotrophic methanogens, especially Methanobacteriales, increased. However, at 25 g/L of nZVI concentration, acetic acid was accumulated and the relative abundance of Clostridium became predominant, indicating that homoacetogenesis was superior over methanogenesis.


Assuntos
Fenômenos Bioquímicos , Dióxido de Carbono/química , Ferro/química , Metano/química , Ácido Acético/metabolismo , Dióxido de Carbono/metabolismo , Euryarchaeota/metabolismo , Gases/química , Metano/metabolismo
3.
J Hazard Mater ; 339: 63-72, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28623724

RESUMO

Antibiotics in the aquatic environment are dispersed through anthropogenic activities at low concentrations. Despite their sub lethal concentration, these biologically active compounds may still have adverse effects to non-target species. This study examined the response of adult zebrafish to 0.1mg/L concentration of clarithromycin, florfenicol, sulfamethazine, and their mixture using environmental metabolomics. Embryo and larvae of the fish were also used to assess fish embryo acute toxicity and behavior tests respectively. The fish embryo toxicity test did not show any inhibition of growth and development of the embryos after 96h of exposure to the antibiotics. Changes in swimming activity were seen in 5-dpf larvae which is believed to be correlated with the length of exposure to the compounds. Meanwhile, environmental metabolomics revealed diverse metabolites and pathways that were affected after 72h of exposure of the adult fish to sub-lethal concentration of the compounds. We found that even at low concentration of the antibiotics, behavioral and metabolic effects were still observed despite the lack of visible morphological changes. Further studies involving other aquatic organisms and bioactive compounds are encouraged to strengthen the findings presented in this novel research.


Assuntos
Antibacterianos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Difosfato de Adenosina/metabolismo , Animais , Colina/metabolismo , Claritromicina/toxicidade , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Guanosina/metabolismo , Metabolômica , Sulfametazina/toxicidade , Natação , Tianfenicol/análogos & derivados , Tianfenicol/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
4.
J Hazard Mater ; 288: 124-33, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25698573

RESUMO

In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17ß-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO2 nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO2 nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron-hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.


Assuntos
Cromo/química , Disruptores Endócrinos/química , Luz Solar , Compostos Benzidrílicos/análise , Catálise , Cromo/efeitos da radiação , Disruptores Endócrinos/efeitos da radiação , Estradiol/química , Concentração de Íons de Hidrogênio , Nanotubos , Fenóis/análise , Fotoquímica , Energia Solar , Titânio/química , Eliminação de Resíduos Líquidos , Poluição Química da Água/análise , Qualidade da Água
5.
J Environ Sci (China) ; 26(6): 1289-93, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079838

RESUMO

Anoxic gas recirculation system was applied to control the membrane fouling in pilot-scale 4-stage anoxic membrane bioreactor (MBR). In the anaerobic-anoxic-anoxic-aerobic flow scheme, hydrophilic polytetrafluoroethylene (PTFE) membrane (0.2 µm, 7.2 m(2)/module) was submerged in the second anoxic zone. During 8 months operation, the average flux of the membrane was 21.3 L/(m(2)·hr). Chemical cleaning of the membrane was conducted only once with sodium hydroxide and sodium hypochlorite. Dissolved oxygen (DO) concentration in the second anoxic zone was maintained with an average of 0.19 ± 0.05 mg/L. Gas chromatography analysis showed that the headspace gas in the second anoxic reactor was mainly consisted of N2 (93.0% ± 2.5%), O2 (3.8% ± 0.6%), and CO2 (3.0% ± 0.5%), where the saturation DO concentration in liquid phase was 1.57 mg/L. Atmospheric O2 content (20.5% ± 0.8%) was significantly reduced in the anoxic gas. The average pH in the reactor was 7.2 ± 0.4. As a result, the recirculation of the anoxic gas was successfully applied to control the membrane fouling in the anoxic MBR.


Assuntos
Incrustação Biológica/prevenção & controle , Reatores Biológicos , Anaerobiose , Membranas Artificiais , Projetos Piloto
6.
Sci Total Environ ; 470-471: 193-200, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140689

RESUMO

Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system.


Assuntos
Poluentes Atmosféricos/análise , Aquicultura/métodos , Carboidratos/análise , Nitrogênio/análise , Animais , Carbono/análise , Monitoramento Ambiental , Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA