Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900789

RESUMO

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Assuntos
COVID-19 , Receptor para Produtos Finais de Glicação Avançada , SARS-CoV-2 , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/complicações , COVID-19/virologia , Animais , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Masculino , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Feminino
2.
BMB Rep ; 56(8): 417-425, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37574808

RESUMO

In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation. [BMB Reports 2023; 56(8): 417-425].


Assuntos
Via de Sinalização Hippo , Neoplasias , Animais , Camundongos , Humanos , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias/metabolismo , Hematopoese
3.
Heliyon ; 9(3): e14179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915477

RESUMO

Particulate matter (PM) contributes to human diseases, particularly lung disease; however, the molecular mechanism of its action is yet to be determined. Herein, we found that prolonged PM exposure induced the cellular senescence of normal lung fibroblasts via a DNA damage-mediated response. This PM-induced senescence (PM-IS) was only observed in lung fibroblasts but not in A549 lung adenocarcinoma cells. Mechanistic analysis revealed that reactive oxygen species (ROS) activate the DNA damage response signaling axis, increasing p53 phosphorylation, ultimately leading to cellular senescence via an increase in p21 expression without affecting the p16-pRB pathway. A549 cells, instead, were resistant to PM-IS due to the PM-induced ROS production suppression. Water-soluble antioxidants, such as vitamin C and N-Acetyl Cysteine, were found to alleviate PM-IS by suppressing ROS production, implying that antioxidants are a promising therapeutic intervention for PM-mediated lung pathogenesis.

4.
Exp Mol Med ; 55(1): 32-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596852

RESUMO

Genetic alterations have been reported for decades in most human embryonic stem cells (hESCs). Survival advantage, a typical trait acquired during long-term in vitro culture, results from the induction of BCL2L1 upon frequent copy number variation (CNV) at locus 20q11.21 and is one of the strongest candidates associated with genetic alterations that occur via escape from mitotic stress. However, the underlying mechanisms for BCL2L1 induction remain unknown. Furthermore, abnormal mitosis and the survival advantage that frequently occur in late passage are associated with the expression of BCL2L1, which is in locus 20q11.21. In this study, we demonstrated that the expression of TPX2, a gene located in 20q11.21, led to BCL2L1 induction and consequent survival traits under mitotic stress in isogenic pairs of hESCs and human induced pluripotent stem cells (iPSCs) with normal and 20q11.21 CNVs. High Aurora A kinase activity by TPX2 stabilized the YAP1 protein to induce YAP1-dependent BCL2L1 expression. A chemical inhibitor of Aurora A kinase and knockdown of YAP/TAZ significantly abrogated the high tolerance to mitotic stress through BCL2L1 suppression. These results suggest that the collective expression of TPX2 and BCL2L1 from CNV at loci 20q11.21 and a consequent increase in YAP1 signaling promote genome instability during long-term in vitro hESC culture.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Aurora Quinase A/genética , Variações do Número de Cópias de DNA , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína bcl-X/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Biochem Biophys Res Commun ; 625: 174-180, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964379

RESUMO

Antiapoptotic B-cell lymphoma-2 (Bcl-2) proteins suppress apoptosis by interacting with proapoptotic regulators. They commonly contain a hydrophobic groove where the Bcl-2 homology 3 (BH3) domain of Bcl-2 family members or BH3 domain-containing non-Bcl-2 family proteins can be accommodated. Peroxisomal testis-specific 1 (Pxt1) was previously identified as a male germ cell-specific protein whose overexpression causes germ cell apoptosis and infertility in male mice. Sequence and biochemical analyses also showed that human Pxt1, which is composed of 134 amino acids and is longer than mouse Pxt1 consisting of only 51 amino acids, has a BH3 domain that interacts with antiapoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL. In this study, we determined the crystal structure of Bcl-xL bound to the human Pxt1 BH3 domain. The five BH3 consensus residues are well conserved in the human Pxt1 BH3 domain and make a critical contribution to the complex formation in a canonical manner. Structural and biochemical analyses also demonstrated that Bcl-xL interacts with the BH3 domain of human Pxt1 but not with that of mouse Pxt1, and that residues 76-83 of human Pxt1, absent in mouse Pxt1, play a pivotal role in the intermolecular binding to Bcl-xL. While Bcl-xL consistently colocalized with human Pxt1 in mitochondria, it did not do so with mouse Pxt1, when expressed in HeLa cells. Collectively, these data verified that human and mouse Pxt1 differ in their binding ability to the antiapoptotic regulator Bcl-xL, which might affect their functionality in controlling apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose , Testículo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Testículo/metabolismo , Proteína bcl-X/metabolismo
6.
Nucleic Acids Res ; 50(15): 8658-8673, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35699208

RESUMO

Alternative pre-mRNA splicing is key to proteome diversity; however, the biological roles of alternative splicing (AS) in signaling pathways remain elusive. Here, we focus on TEA domain transcription factor 1 (TEAD1), a YAP binding factor in the Hippo signaling pathway. Public database analyses showed that expression of YAP-TEAD target genes negatively correlated with the expression of a TEAD1 isoform lacking exon 6 (TEAD1ΔE6) but did not correlate with overall TEAD1 expression. We confirmed that the transcriptional activity and oncogenic properties of the full-length TEAD1 isoform were greater than those of TEAD1ΔE6, with the difference in transcription related to YAP interaction. Furthermore, we showed that RNA-binding Fox-1 homolog 2 (RBFOX2) promoted the inclusion of TEAD1 exon 6 via binding to the conserved GCAUG element in the downstream intron. These results suggest a regulatory mechanism of RBFOX2-mediated TEAD1 AS and provide insight into AS-specific modulation of signaling pathways.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
7.
Cell Death Differ ; 28(9): 2555-2570, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33753903

RESUMO

Wnt signaling is mainly transduced by ß-catenin via regulation of the ß-catenin destruction complex containing Axin, APC, and GSK3ß. Transcription factor EB (TFEB) is a well-known master regulator of autophagy and lysosomal biogenesis processes. TFEB's nuclear localization and transcriptional activity are also regulated by various upstream signals. In this study, we found that Wnt signaling induces the nuclear localization of TFEB and the expression of Wnt target genes is regulated by TFEB-ß-catenin-TCF/LEF1 as well as ß-catenin-TCF/LEF1 complexes. Our biochemical data revealed that TFEB is a part of the ß-catenin destruction complex, and destabilization of the destruction complex by knockdown of either Axin or APC causes nuclear localization of TFEB. Interestingly, RNA-sequencing analysis revealed that about 27% of Wnt3a-induced genes were TFEB dependent. However, these "TFEB mediated Wnt target genes" were different from TFEB target genes involved in autophagy and lysosomal biogenesis processes. Mechanistically, we found that Tankyrase (TNKS) PARsylates TFEB with Wnt ON signaling, and the nuclear localized PARsylated TFEB forms a complex with ß-catenin-TCF/LEF1 to induce the "TFEB mediated Wnt target genes". Finally, we found that in various types of cancer, the levels of TFEB mediated Wnt target genes exhibit strong correlations with the level of Axin2, which represents the activity of Wnt signaling. Overall, our data suggest that Wnt signaling induces the expression of a subset of genes that are distinct from previously known genes regulated by the ß-catenin-TCF/LEF1 complex or TFEB, by forming a transcription factor complex consisting of PARsylated TFEB and ß-catenin-TCF/LEF1.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Oncogenes/genética , beta Catenina/metabolismo , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Células HeLa , Humanos , Transfecção , Via de Sinalização Wnt
8.
Proc Natl Acad Sci U S A ; 117(24): 13529-13540, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482852

RESUMO

The Hippo pathway plays a pivotal role in tissue homeostasis and tumor suppression. YAP and TAZ are downstream effectors of the Hippo pathway, and their activities are tightly suppressed by phosphorylation-dependent cytoplasmic retention. However, the molecular mechanisms governing YAP/TAZ nuclear localization have not been fully elucidated. Here, we report that Mastermind-like 1 and 2 (MAML1/2) are indispensable for YAP/TAZ nuclear localization and transcriptional activities. Ectopic expression or depletion of MAML1/2 induces nuclear translocation or cytoplasmic retention of YAP/TAZ, respectively. Additionally, mutation of the MAML nuclear localization signal, as well as its YAP/TAZ interacting region, both abolish nuclear localization and transcriptional activity of YAP/TAZ. Importantly, we demonstrate that the level of MAML1 messenger RNA (mRNA) is regulated by microRNA-30c (miR-30c) in a cell-density-dependent manner. In vivo and clinical results suggest that MAML potentiates YAP/TAZ oncogenic function and positively correlates with YAP/TAZ activation in human cancer patients, suggesting pathological relevance in the context of cancer development. Overall, our study not only provides mechanistic insight into the regulation of YAP/TAZ subcellular localization, but it also strongly suggests that the miR30c-MAML-YAP/TAZ axis is a potential therapeutic target for developing novel cancer treatments.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Transporte Proteico , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
9.
PLoS Biol ; 17(7): e3000367, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323018

RESUMO

Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7's ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis.


Assuntos
Transformação Celular Neoplásica , Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Neoplasias do Colo do Útero/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Ligação Proteica , Domínios Proteicos , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Homologia de Sequência de Aminoácidos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
10.
Proc Natl Acad Sci U S A ; 116(19): 9423-9432, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000600

RESUMO

The Hippo-YAP/TAZ signaling pathway plays a pivotal role in growth control during development and regeneration and its dysregulation is widely implicated in various cancers. To further understand the cellular and molecular mechanisms underlying Hippo signaling regulation, we have found that activities of core Hippo signaling components, large tumor suppressor (LATS) kinases and YAP/TAZ transcription factors, oscillate during mitotic cell cycle. We further identified that the anaphase-promoting complex/cyclosome (APC/C)Cdh1 E3 ubiquitin ligase complex, which plays a key role governing eukaryotic cell cycle progression, intrinsically regulates Hippo signaling activities. CDH1 recognizes LATS kinases to promote their degradation and, hence, YAP/TAZ regulation by LATS phosphorylation is under cell cycle control. As a result, YAP/TAZ activities peak in G1 phase. Furthermore, we show in Drosophila eye and wing development that Cdh1 is required in vivo to regulate the LATS homolog Warts with a conserved mechanism. Cdh1 reduction increased Warts levels, which resulted in reduction of the eye and wing sizes in a Yorkie dependent manner. Therefore, LATS degradation by APC/CCdh1 represents a previously unappreciated and evolutionarily conserved layer of Hippo signaling regulation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas Cdh1/metabolismo , Proteínas de Drosophila/metabolismo , Fase G1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Antígenos CD/genética , Caderinas/genética , Proteínas Cdh1/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Células HeLa , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
11.
Cancer Sci ; 110(4): 1453-1463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729615

RESUMO

Tumor cells overexpress amino acid transporters to meet the increased demand for amino acids. PQ loop repeat-containing (PQLC)2 is a cationic amino acid transporter that might be involved in cancer progression. Here, we show that upregulation of PQLC2 is critical to gastric cancer (GC) development in vitro and in vivo. Both PQLC2 mRNA and protein were overexpressed in GC tissues, especially of the diffuse type. Overexpression of PQLC2 promoted cell growth, anchorage independence, and tumor formation in nude mice. This was due to activation of MEK/ERK1/2 and PI3K/AKT signaling. Conversely, PQLC2 knockdown caused growth arrest and cell death of cancer cells and suppressed tumor growth in a mouse xenograft model. These results suggest that targeting PQLC2 is an effective strategy for GC treatment.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Neoplasias Gástricas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sistemas de Transporte de Aminoácidos Básicos/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Rep ; 25(3): 571-584.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332639

RESUMO

Wnt/ß-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/ß-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/ß-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/ß-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with ß-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/ß-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Músculo Liso Vascular/citologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt
13.
Sensors (Basel) ; 18(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200477

RESUMO

We describe a near-infrared (NIR) fluorescent probe 1 for the selective detection of GSH over Hcy and Cys under physiological conditions. Probe 1 was composed of Cy7 as a NIR dye and 2-mercaptopyridine as a GSH-reactive site and fluorescence quencher. In the presence of GSH, the 2-mercaptopyridine functionality of probe 1 was replaced by the thiolate group of GSH through a nucleophilic substitution reaction with a fluorescence increase at 818 nm. The probe was found to be highly selective for GSH over Hcy, Cys, and other tested potential interferants, including ROS and metal ions. In addition, probe 1 successfully displayed fluorescence changes in response to changing the GSH concentrations in MDA-MB-231 cells in the presence of external agents i.e., N-acetyl-l-cysteine (NAC; as GSH inducer) or buthionine sulfoximine (BSO; as GSH inhibitor). We envision that probe 1 will serve as a promising sensing tool for monitoring the changes of the GSH level and the understanding of the roles of GSH under physiological and pathological conditions.


Assuntos
Carbocianinas/análise , Cisteína/análise , Corantes Fluorescentes/análise , Glutationa/análise , Homocisteína/análise , Piridinas/análise , Carbocianinas/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Piridinas/química
14.
Nature ; 561(7724): 556-560, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232453

RESUMO

N6-methyladenosine (m6A) modification of mRNA is emerging as an important regulator of gene expression that affects different developmental and biological processes, and altered m6A homeostasis is linked to cancer1-5. m6A modification is catalysed by METTL3 and enriched in the 3' untranslated region of a large subset of mRNAs at sites close to the stop codon5. METTL3 can promote translation but the mechanism and relevance of this process remain unknown1. Here we show that METTL3 enhances translation only when tethered to reporter mRNA at sites close to the stop codon, supporting a mechanism of mRNA looping for ribosome recycling and translational control. Electron microscopy reveals the topology of individual polyribosomes with single METTL3 foci in close proximity to 5' cap-binding proteins. We identify a direct physical and functional interaction between METTL3 and the eukaryotic translation initiation factor 3 subunit h (eIF3h). METTL3 promotes translation of a large subset of oncogenic mRNAs-including bromodomain-containing protein 4-that is also m6A-modified in human primary lung tumours. The METTL3-eIF3h interaction is required for enhanced translation, formation of densely packed polyribosomes and oncogenic transformation. METTL3 depletion inhibits tumorigenicity and sensitizes lung cancer cells to BRD4 inhibition. These findings uncover a mechanism of translation control that is based on mRNA looping and identify METTL3-eIF3h as a potential therapeutic target for patients with cancer.


Assuntos
Carcinogênese , Fator de Iniciação 3 em Eucariotos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Animais , Linhagem Celular Tumoral , Ciclização , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Conformação de Ácido Nucleico , Polirribossomos/química , Polirribossomos/metabolismo , Ligação Proteica , RNA Mensageiro/genética
15.
BMB Rep ; 51(3): 106-118, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29397869

RESUMO

How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed. [BMB Reports 2018; 51(3): 106-118].


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proteínas de Drosophila/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo , Proteínas de Sinalização YAP
16.
Gut ; 67(9): 1692-1703, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28866620

RESUMO

OBJECTIVE: Hippo signalling is a recently identified major oncosuppressive pathway that plays critical roles in inhibiting hepatocyte proliferation, survival and hepatocellular carcinoma (HCC) formation. Hippo kinase (Mst1 and Mst2) inhibits HCC proliferation by suppressing Yap/Taz transcription activities. As human HCC is mainly driven by chronic liver inflammation, it is not clear whether Hippo signalling inhibits HCC by shaping its inflammatory microenvironment. DESIGN: We have established a genetic HCC model by deleting Mst1 and Mst2 in hepatocytes. Functions of inflammatory responses in this model were characterised by molecular, cellular and FACS analysis, immunohistochemistry and genetic deletion of monocyte chemoattractant protein-1 (Mcp1) or Yap. Human HCC databases and human HCC samples were analysed by immunohistochemistry. RESULTS: Genetic deletion of Mst1 and Mst2 in hepatocytes (DKO) led to HCC development, highly upregulated Mcp1 expression and massive infiltration of macrophages with mixed M1 and M2 phenotypes. Macrophage ablation or deletion of Mcp1 in DKO mice markedly reduced hepatic inflammation and HCC development. Moreover, Yap removal abolished induction of Mcp1 expression and restored normal liver growth in the Mst1/Mst2 DKO mice. Finally, we showed that MCP1 is a direct transcription target of YAP in hepatocytes and identified a strong gene expression correlation between YAP targets and MCP-1 in human HCCs. CONCLUSIONS: Hippo signalling in hepatocytes maintains normal liver growth by suppressing macrophage infiltration during protumoural microenvironment formation through the inhibition of Yap-dependent Mcp1 expression, providing new targets and strategies to treat HCCs.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas Experimentais/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/terapia , Proliferação de Células/genética , Transformação Celular Neoplásica , Fator de Crescimento de Hepatócito/genética , Hepatócitos/metabolismo , Via de Sinalização Hippo , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/terapia , Camundongos , Camundongos Mutantes , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Serina-Treonina Quinase 3 , Transdução de Sinais/genética , Fatores de Transcrição/genética
17.
Proc Natl Acad Sci U S A ; 114(18): 4691-4696, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416659

RESUMO

Hippo signaling controls the expression of genes regulating cell proliferation and survival and organ size. The regulation of core components in the Hippo pathway by phosphorylation has been extensively investigated, but the roles of ubiquitination-deubiquitination processes are largely unknown. To identify deubiquitinase(s) that regulates Hippo signaling, we performed unbiased siRNA screening and found that YOD1 controls biological responses mediated by YAP/TAZ. Mechanistically, YOD1 deubiquitinates ITCH, an E3 ligase of LATS, and enhances the stability of ITCH, which leads to reduced levels of LATS and a subsequent increase in the YAP/TAZ level. Furthermore, we show that the miR-21-mediated regulation of YOD1 is responsible for the cell-density-dependent changes in YAP/TAZ levels. Using a transgenic mouse model, we demonstrate that the inducible expression of YOD1 enhances the proliferation of hepatocytes and leads to hepatomegaly in a YAP/TAZ-activity-dependent manner. Moreover, we find a strong correlation between YOD1 and YAP expression in liver cancer patients. Overall, our data strongly suggest that YOD1 is a regulator of the Hippo pathway and would be a therapeutic target to treat liver cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endopeptidases/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Endopeptidases/genética , Células HEK293 , Células HeLa , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Células NIH 3T3 , Proteínas de Neoplasias/genética , Estabilidade Proteica , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas Repressoras/genética , Tioléster Hidrolases/genética , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Ubiquitina-Proteína Ligases/genética
18.
BMB Rep ; 50(1): 1-2, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27881216

RESUMO

Acquiring a selective growth advantage by breaking the proliferation barrier established by gatekeeper genes is a centrally important event in tumor formation. Removal of the mammalian Hippo kinase Mst1 and Mst2 in hepatocytes leads to rapid hepatocellular carcinoma (HCC) formation, indicating that the Hippo signaling pathway is a critical gatekeeper that restrains abnormal growth in hepatocytes. By rigorous genetic approaches, we identified an interacting network of the Hippo, Wnt/ß-catenin and Notch signaling pathways that control organ size and HCC development. We found that in hepatocytes, the loss of Mst1/2 leads to the activation of Notch signaling, which forms a positive feedback loop with Yap/Taz (transcription factors controlled by Mst1/2). This positive feedback loop results in severe liver enlargement and rapid HCC formation. Blocking the Yap/Taz-Notch positive feedback loop by Notch inhibition in vivo significantly reduced the Yap/Taz activities, hepatocyte proliferation and tumor formation. Furthermore, we uncovered a surprising inhibitory role of Wnt/ß-catenin signaling to Yap/Taz activities, which are important in tumor initiation. Genetic removal of ß-catenin in the liver of the Mst1/2 mutants significantly accelerates tumoriogenesis. Therefore, Wnt/ß-catenin signaling, known for its oncogenic property, exerts an unexpected function in restricting Yap/Taz and Notch activities in HCC initiation. The molecular interplay between the three signaling pathways identified in our study provides new insights in developing novel therapeutic strategies to treat liver tumors. [BMB Reports 2017; 50(1): 1-2].


Assuntos
Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica , Via de Sinalização Hippo , Humanos , Transdução de Sinais
19.
J Clin Invest ; 127(1): 137-152, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27869648

RESUMO

Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/ß-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/WW domain containing transcription regulator 1 (YAP/TAZ), STAT3, Wnt/ß-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/ß-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when mammalian sterile 20-like kinase 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinase 3 , Proteínas de Sinalização YAP , beta Catenina/genética
20.
EMBO Rep ; 18(1): 72-86, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979971

RESUMO

YAP is the major downstream effector of the Hippo pathway, which controls cell growth, tissue homeostasis, and organ size. Aberrant YAP activation, resulting from dysregulation of the Hippo pathway, is frequently observed in human cancers. YAP is a transcription co-activator, and the key mechanism of YAP regulation is its nuclear and cytoplasmic translocation. The Hippo pathway component, LATS, inhibits YAP by phosphorylating YAP at Ser127, leading to 14-3-3 binding and cytoplasmic retention of YAP Here, we report that osmotic stress stimulates transient YAP nuclear localization and increases YAP activity even when YAP Ser127 is phosphorylated. Osmotic stress acts via the NLK kinase to induce YAP Ser128 phosphorylation. Phosphorylation of YAP at Ser128 interferes with its ability to bind to 14-3-3, resulting in YAP nuclear accumulation and induction of downstream target gene expression. This osmotic stress-induced YAP activation enhances cellular stress adaptation. Our findings reveal a critical role for NLK-mediated Ser128 phosphorylation in YAP regulation and a crosstalk between osmotic stress and the Hippo pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Pressão Osmótica , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Nucléolo Celular , Citoplasma/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Transporte Proteico , Serina/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA