Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 138(6): 901-912, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31377847

RESUMO

Low-level somatic mutations have been shown to be the major genetic etiology of intractable epilepsy. The extents thereof, however, have yet to be systematically and accurately explored in a large cohort of resected epilepsy brain tissues. Moreover, clinically useful and precise analysis tools for detecting low-level somatic mutations from unmatched formalin-fixed paraffin-embedded (FFPE) brain samples, the most clinically relevant samples, are still lacking. In total, 446 tissues samples from 232 intractable epilepsy patients with various brain pathologies were analyzed using deep sequencing (average read depth, 1112x) of known epilepsy-related genes (up to 28 genes) followed by confirmatory site-specific amplicon sequencing. Pathogenic mutations were discovered in 31.9% (74 of 232) of the resected epilepsy brain tissues and were recurrently found in only eight major focal epilepsy genes, including AKT3, DEPDC5, MTOR, PIK3CA, TSC1, TSC2, SCL35A2, and BRAF. Somatic mutations, two-hit mutations, and germline mutations accounted for 22.0% (51), 0.9% (2), and 9.1% (21) of the patients with intractable epilepsy, respectively. The majority of pathogenic somatic mutations (62.3%, 33 of 53) had a low variant allelic frequency of less than 5%. The use of deep sequencing replicates in the eight major focal epilepsy genes robustly increased PPVs to 50-100% and sensitivities to 71-100%. In an independent FCDII cohort of only unmatched FFPE brain tissues, deep sequencing replicates in the eight major focal epilepsy genes identified pathogenic somatic mutations in 33.3% (5 of 15) of FCDII individuals (similar to the genetic detecting rate in the entire FCDII cohort) without any false-positive calls. Deep sequencing replicates of major focal epilepsy genes in unmatched FFPE brain tissues can be used to accurately and efficiently detect low-level somatic mutations, thereby improving overall patient care by enriching genetic counseling and informing treatment decisions.


Assuntos
Encéfalo , Epilepsia Resistente a Medicamentos/genética , Mutação , Análise de Sequência/métodos , Adolescente , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Lactente , Masculino , Adulto Jovem
2.
Nature ; 560(7717): 243-247, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069053

RESUMO

Glioblastoma (GBM) is a devastating and incurable brain tumour, with a median overall survival of fifteen months1,2. Identifying the cell of origin that harbours mutations that drive GBM could provide a fundamental basis for understanding disease progression and developing new treatments. Given that the accumulation of somatic mutations has been implicated in gliomagenesis, studies have suggested that neural stem cells (NSCs), with their self-renewal and proliferative capacities, in the subventricular zone (SVZ) of the adult human brain may be the cells from which GBM originates3-5. However, there is a lack of direct genetic evidence from human patients with GBM4,6-10. Here we describe direct molecular genetic evidence from patient brain tissue and genome-edited mouse models that show astrocyte-like NSCs in the SVZ to be the cell of origin that contains the driver mutations of human GBM. First, we performed deep sequencing of triple-matched tissues, consisting of (i) normal SVZ tissue away from the tumour mass, (ii) tumour tissue, and (iii) normal cortical tissue (or blood), from 28 patients with isocitrate dehydrogenase (IDH) wild-type GBM or other types of brain tumour. We found that normal SVZ tissue away from the tumour in 56.3% of patients with wild-type IDH GBM contained low-level GBM driver mutations (down to approximately 1% of the mutational burden) that were observed at high levels in their matching tumours. Moreover, by single-cell sequencing and laser microdissection analysis of patient brain tissue and genome editing of a mouse model, we found that astrocyte-like NSCs that carry driver mutations migrate from the SVZ and lead to the development of high-grade malignant gliomas in distant brain regions. Together, our results show that NSCs in human SVZ tissue are the cells of origin that contain the driver mutations of GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Ventrículos Laterais/patologia , Mutação , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Progressão da Doença , Edição de Genes , Genoma/genética , Glioblastoma/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isocitrato Desidrogenase/genética , Ventrículos Laterais/metabolismo , Camundongos , Reprodutibilidade dos Testes , Análise de Célula Única
3.
Neuron ; 99(1): 83-97.e7, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937275

RESUMO

Focal malformations of cortical development (FMCDs), including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are major etiologies of pediatric intractable epilepsies exhibiting cortical dyslamination. Brain somatic mutations in MTOR have recently been identified as a major genetic cause of FMCDs. However, the molecular mechanism by which these mutations lead to cortical dyslamination remains poorly understood. Here, using patient tissue, genome-edited cells, and mouse models with brain somatic mutations in MTOR, we discovered that disruption of neuronal ciliogenesis by the mutations underlies cortical dyslamination in FMCDs. We found that abnormal accumulation of OFD1 at centriolar satellites due to perturbed autophagy was responsible for the defective neuronal ciliogenesis. Additionally, we found that disrupted neuronal ciliogenesis accounted for cortical dyslamination in FMCDs by compromising Wnt signals essential for neuronal polarization. Altogether, this study describes a molecular mechanism by which brain somatic mutations in MTOR contribute to the pathogenesis of cortical dyslamination in FMCDs.


Assuntos
Autofagia/genética , Córtex Cerebral/metabolismo , Cílios , Malformações do Desenvolvimento Cortical/genética , Neurônios/metabolismo , Serina-Treonina Quinases TOR/genética , Adolescente , Animais , Polaridade Celular/genética , Centríolos/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Edição de Genes , Células HEK293 , Hemimegalencefalia/embriologia , Hemimegalencefalia/genética , Hemimegalencefalia/patologia , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Mutação , Proteínas/metabolismo , Esclerose Tuberosa/embriologia , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA