Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Heliyon ; 10(9): e30474, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711645

RESUMO

This study investigates the communication between skin cells, specifically melanocytes, keratinocytes, and fibroblasts, which is crucial for the process of melanin production known as melanogenesis. We aimed to understand the role of melanocyte exosomes in regulating melanogenesis and to uncover the microRNAs influencing this process. We isolated exosomes and characterized them using advanced microscopy and protein analysis to achieve this. We conducted experiments on melanoma cells to study melanin production regulation and examined how exosomes influenced gene expression related to melanogenesis. The results revealed that melanocyte exosomes increased certain types of tyrosinases, thereby enhancing melanin production. Furthermore, we acquired the miRNA profile of exosomes and hypothesized that specific siRNAs, such as miR-21a-5p, could potentially facilitate melanin synthesis. Our findings shed light on the importance of exosomes in skin health and provide valuable insights into intercellular communication mechanisms. Understanding these processes can pave the way for innovative therapies to treat melanin-related disorders and maintain healthy skin.

2.
Nanoscale Adv ; 6(1): 32-50, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125597

RESUMO

Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.

3.
Carbohydr Polym ; 321: 121256, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739491

RESUMO

Increasing the freshness of vegetables requires the elimination of ethylene, which can be done through chemical methods. However, the development of eco-friendly approaches is required for environmental reasons. Chlorella vulgaris (C. vulgaris) was selected as a new biological material for demonstrating an excellent performance in ethylene removal. To support C. vulgaris, bacterial cellulose (BC) produced by Gluconacetobacter hansenii (G. hansenii) was chosen due to its high water content and biodegradability. To increase BC productivity, UV-induced mutant G. hansenii was isolated, and they produced high yields of BC (9.80 ±â€¯0.52 g/L). Furthermore, comparative transcriptome analysis revealed metabolic flux changes toward UDP-glucose accumulation and enhanced BC production. BC-based hydrogels (BC hydrogels) were successfully prepared using a 2.4 % carboxymethyl cellulose (CMC) and 1 % agar mixture. We used Chlorella-BC hydrogels as an ethylene scavenger, which reduced 90 % of ethylene even when the immobilized C. vulgaris was preserved for 14 days at room temperature without media supplementation. We demonstrated for the first time the potential of BC hydrogels to integrate C. vulgaris as a sustainable ethylene absorber for green food packaging and biomass technology.


Assuntos
Chlorella vulgaris , Animais , Hidrogéis , Etilenos , Celulose , Peixes
4.
Microbiol Spectr ; : e0146623, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747185

RESUMO

Saccharomyces cerevisiae is a single-celled fungal microorganism. S. cerevisiae-derived vacuoles are closely related to mammalian lysosomes, which play a role in the degradation of macromolecules by various hydrolytic enzymes. This study evaluated the anti-inflammatory efficacy of S. cerevisiae-vacuoles by inhibiting inflammatory mediators induced by lipopolysaccharide (LPS). The results showed that treatment with 5, 10, and 20 µg/mL of S. cerevisiae-derived vacuoles almost completely inhibited the LPS-induced expression of iNOS protein and mRNA. Moreover, vacuoles significantly reduced the mRNA expression of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) in LPS-stimulated macrophages compared to the control cells. The immunofluorescence analysis confirmed that S. cerevisiae-derived vacuoles inhibited the translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in LPS-stimulated cells. Taken together, the treatment with S. cerevisiae-derived vacuoles alone activated macrophages, but LPS-activated macrophages modulated pro-inflammatory mediators by downregulating the NF-κB pathway. These results suggest that S. cerevisiae-derived vacuoles may have therapeutic potential in the treatment of inflammatory diseases. In conclusion, our study provides new insights into the immunomodulatory effects of S. cerevisiae-derived vacuoles and their potential as a novel anti-inflammatory agent. IMPORTANCE This study investigates the potential of using vacuoles derived from the yeast Saccharomyces cerevisiae as a new anti-inflammatory therapy. Inflammation is a natural response of the immune system to invading pathogens, but when it is dysregulated, it can lead to chronic diseases. The researchers found that treating macrophages with vacuoles significantly reduced the production of pro-inflammatory cytokines and iNOS, markers of inflammation when they were stimulated with lipopolysaccharide. The study also showed that vacuoles inhibited the NF-κB signaling pathway, which is involved in the induction of pro-inflammatory cytokines in macrophages. These findings suggest that S. cerevisiae-derived vacuoles may have potential as a new therapeutic agent for regulating the inflammatory response in various diseases. Further studies are needed to evaluate the efficacy and safety of vacuoles in vivo and to elucidate the underlying mechanisms of their anti-inflammatory effects.

5.
ACS Appl Mater Interfaces ; 15(35): 41258-41270, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615983

RESUMO

Immune adjuvants have roles in immune activation for cancer therapy, and adjuvants derived from microbes have been applied. In this study, we propose the use of bioengineered vacuoles, derived from recombinant yeast with acute myeloid leukemia (AML) specificity and having a TLR-2-binding peptide (VacT2BP) on their surface, to induce a proinflammatory response as a dual-function nanomaterial for daunorubicin (DNR) delivery. Our results demonstrate that nanosized, isolated VacT2BP induced HL-60 cell-specific DNR delivery and apoptosis. Furthermore, we observed the selective release of high-mobility group box 1 from apoptotic HL-60 cells by DNR@VacT2BP. We concluded that DNR@VacT2BP exhibited target selectivity, and the indiscriminate occurrence of damage-associated molecular patterns (DAMPs) was inhibited by the VacT2BP carrier. The therapeutic efficacy of DNR@VacT2BP was confirmed in AML xenograft mice, with about 82% tumor growth inhibition. Following drug delivery, apoptotic cells and DAMPs with residual VacT2BP (apopDNR@VacT2BP) upregulated the proinflammatory immune response of macrophages. In addition, apopDNR@VacT2BP enhanced phagocytosis activity. Macrophages stimulated by apopDNR@VacT2BP suppressed cancer proliferation by about 40%. In summary, our results suggest that dual-functional vacuoles with a target-specific peptide can be a potential strategy for selective drug delivery and construction of an immune environment to fight cancer, thereby improving prognosis.


Assuntos
Daunorrubicina , Portadores de Fármacos , Leucemia Mieloide Aguda , Daunorrubicina/administração & dosagem , Animais , Camundongos , Humanos , Células HL-60 , Leucemia Mieloide Aguda/tratamento farmacológico , Macrófagos/imunologia , Inflamação , Fagocitose , Saccharomyces cerevisiae , Nanopartículas , Camundongos Endogâmicos BALB C , Feminino , Receptor 2 Toll-Like , Apoptose , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biochem Mol Toxicol ; 37(10): e23447, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37368822

RESUMO

Triclosan has been widely used as an antimicrobial agent. However, triclosan was found to cause toxicity, including muscle contraction disturbances, carcinogenesis, and endocrine disorders. In addition, it was found to affect central nervous system function adversely and even have ototoxic effects. Conventional methods for detecting such triclosan can be performed easily. However, the conventional detection methods are inadequate in precisely reflecting the impact of toxic substances on stressed organisms. Therefore, a test model for the toxic environment at the molecular level through the organism is needed. From that point of view, Daphnia magna is being used as a ubiquitous model. D. magna has the advantages of easy cultivation, a short lifespan and high reproductive capacity, and high sensitivity to chemicals. Therefore, the protein expression pattern of D. magna that appear in response to chemicals can be utilized as biomarkers for detecting specific chemicals. In this study, we characterized the proteomic response of D. magna following triclosan exposure via two-dimensional (2D) gel electrophoresis. As a result, we confirmed that triclosan exposure completely suppressed D. magna 2-domain hemoglobin protein and evaluated this protein as a biomarker for triclosan detection. We constructed the HeLa cells in which the GFP gene was controlled by D. magna 2-domain hemoglobin promoter, which under normal conditions, expressed GFP, but upon triclosan exposure, suppressed GFP expression. Consequently, we consider that the HeLa cells containing the pBABE-HBF3-GFP plasmid developed in this study can be used as novel biomarkers for triclosan detection.


Assuntos
Triclosan , Poluentes Químicos da Água , Animais , Humanos , Triclosan/toxicidade , Daphnia/genética , Daphnia/metabolismo , Células HeLa , Proteômica , Poluentes Químicos da Água/farmacologia , Hemoglobinas/metabolismo , Biomarcadores/metabolismo
7.
Environ Pollut ; 327: 121556, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044252

RESUMO

Phage display is a widely used technique for selecting specific binding peptides, but presenting antigens in their natural form can be challenging, as protein coating may induce structural changes. In this study, we employed a whole cell-based phage display technique without a coating step to select peptides that bind specifically to Daphnia magna eggs. Boiled eggs were used as a control to ensure that antigens were presented in their natural forms. We identified a peptide, DEP1 (LYALPLSHLKSHGGG), with the highest binding affinity to D. magna eggs. DEP1 did not affect zebrafish eggs, but it inhibited normal hatching and reproductive ability in D. magna eggs, and hindered growth in neonates before their first ecdysis. Morphological analysis revealed that DEP1 caused intestinal damage and tissue abnormalities. Our findings demonstrate that the whole cell-based phage display technique is successful in presenting antigens in their natural form, and that the DEP1 peptide can be applied to regulate the growth cycle of D. magna. These results have implications for the use of phage display in environmental research and the potential use of DEP1 for hazardous organisms in aquatic systems.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Técnicas de Visualização da Superfície Celular , Peixe-Zebra , Peptídeos , Reprodução
8.
Microbiol Spectr ; 11(3): e0092023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098917

RESUMO

Staphylococcus aureus is a common pathogen that causes health care-related and community-associated infections. In this study, we provide a novel system that can recognize and kill S. aureus bacteria. The system is specifically based on a combination of the phage display library technique and yeast vacuoles. A phage clone displaying a peptide capable of specific binding to a whole S. aureus cell was selected from a 12-mer phage peptide library. The peptide sequence was SVPLNSWSIFPR. The selected phage's ability to bind specifically with S. aureus was confirmed using an enzyme-linked immunosorbent assay, and the chosen peptide was then synthesized. The results showed that the synthesized peptides displayed high affinity with S. aureus but low binding ability with other strains, including Gram-negative and Gram-positive bacteria such as Salmonella sp., Shigella spp., Escherichia coli, and Corynebacterium glutamicum. In addition, yeast vacuoles were used as a drug carrier by encapsulating daptomycin, a lipopeptide antibiotic used to treat Gram-positive bacterial infections. The expression of specific peptides at the encapsulated vacuole membrane created an efficient system that can specifically recognize and kill S. aureus bacteria. IMPORTANCE The phage display method was used to select peptides with high affinity and specificity for S. aureus, and these peptides were then induced to be expressed on the surface of yeast vacuoles. These surface-modified vacuoles can act as drug carriers, with drugs such as the lipopeptide antibiotic daptomycin loaded inside. An advantage of using yeast vacuoles as a drug carrier is that they can be easily produced through yeast culture, making the approach cost-effective and suitable for large-scale production and potential implementation in clinical settings. This novel approach offers a promising way to specifically target and eliminate S. aureus that could ultimately lead to improved treatment of bacterial infections and reduced risk of antibiotic resistance.


Assuntos
Daptomicina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Saccharomyces cerevisiae , Vacúolos , Peptídeos/farmacologia , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia
9.
Sci Rep ; 13(1): 2116, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746976

RESUMO

The majority of the vitamin D that is present in the blood binds to vitamin D binding protein (VDBP) and circulates in the form of a complex (VDBP-Complex). Knowing the level of vitamin D in the body is crucial for vitamin D-related treatments so that the right dosage of vitamin D can be given. In other words, it is essential to distinguish between the protein VDBP and the complex form bound to vitamin D. As a novel way for the detection of VDBP-Complex, a more effective phage display methodology was applied in this study along with the addition of two approaches. In order to screen a sequence specific to the target only, the pre-binding method and after-binding method were performed. VDBP-Complex was directly coated on the petri dishes. In order to select phages that specifically bind to the VDBP-Complex, random phages were attached, and selected by 7 times of biopanning. Individual DNA sequences were analyzed for each biopanning to find specific peptide sequences for VDBP-Complex. The affinity of binding phages was verified by ELISA assay using an anti-M13 antibody. The phage having a sequence of SFTKTSTFTWRD (called as M3) has shown the highest binding affinity to VDBP-Complex. As a result of the removal test of VDBP-Complex using magnetic beads conjugated with M3 peptide, it was confirmed that significant decrease of VDBP-Complex. The unique characteristic of the M3 sequence was confirmed through a sequence-modified peptide (SFT motif). That is, it is expected that the M3 peptide may be used to determine the vitamin D levels in the blood.


Assuntos
Bacteriófagos , Vitamina D , Peptídeos/metabolismo , Vitaminas , Proteína de Ligação a Vitamina D , Técnicas de Visualização da Superfície Celular/métodos , Ensaio de Imunoadsorção Enzimática , Bacteriófagos/metabolismo
10.
Mol Biotechnol ; 65(7): 1119-1128, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36445610

RESUMO

Currently, ascorbic acid (AA) is widely used as a skin whitening material, but, AA, an unstable hydrophilic molecule, cannot penetrate the skin easily, due to the hydrophobic character of the stratum corneum. Therefore, we conjugated AA with hydrated zinc oxide-an inorganic matrix with positive surface charge, to improve the stability of AA. The metal-conjugated-ascorbic acid (ZnAA) was then combined with yeast vacuole through the vacuolar membrane proteins that relate to metal transportation to create an enhanced vacuole that contained ZnAA. The characteristics of vacuole with ZnAA (ZnAA_Vac) were next examined by various tests that included X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray (EDX) analysis. Furthermore, the ability of ZnAA_Vac to degrade melanin was confirmed in both melanoma cell line B16F10, and the artificial human skin MelanoDerm. The results showed that ZnAA_Vac possessed a higher depigmenting effect than the wild-type vacuole or ascorbic acid by reducing 75% of melanin color. Interestingly, ZnAA_Vac was found to be harmless, and did not cause any cytotoxicity to the cells. Overall, ZnAA_Vac is expected to provide a robust, harmless, and effective whitening agent for the skin.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Melaninas , Vacúolos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Difração de Raios X , Antibacterianos/química
11.
Mol Biotechnol ; 64(12): 1350-1355, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35637367

RESUMO

To develop whitening cosmetic materials, we conducted a study on lysosomes that decisively contribute to the decomposition of melanin during autophagy in keratinocytes. In this study, we found that the lysosomal fraction inhibits melanin synthesis in melanocyte, and the potential for the whitening function of lysosomal fraction to degrade melanin in the cells, or accompany other melanin synthesis inhibition pathways, including tyrosinase inhibition. Additionally, through the zebrafish test, we confirmed the effect of lysosomal fraction on melanin production in vivo. The results suggest that the lysosome fraction effectively reduces melanin or inhibits melanogenesis in a melanogenesis phenotype whole-animal model.


Assuntos
Melaninas , Monofenol Mono-Oxigenase , Animais , Linhagem Celular Tumoral , Lisossomos/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Fenótipo , Peixe-Zebra/metabolismo
12.
Artif Cells Nanomed Biotechnol ; 50(1): 147-157, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635271

RESUMO

The vacuoles in Saccharomyces cerevisiae are the key players digesting the waste within the cell. This functional organelle corresponding to the lysosome of mammalians contains acidic hydrolases and specific membrane proteins. Vacuoles have more than 60 hydrolytic enzymes and can easily be modified by genetic engineering. In previous study, we optimised the encapsulation condition with appropriate time and concentration and confirmed the use of vacuole as drug delivery carrier for acute myeloid leukaemia treatment. In this study, recombinant vacuole that could target the acute myeloid leukaemia cell line was constructed. The vacuoles derived from genetic engineered yeast were decorated with targeting peptide that has specific affinity with TLR2 on AML cell membrane. The anti-cancer efficacy of AML targeting vacuoles carriers with encapsulated daunorubicin was shown to be higher than normal vacuole carriers and the crude daunorubicin. The results confirmed that target selective chemotherapy using the vacuole drug delivery system is effective and offers potential for cancer therapy.


Assuntos
Daunorrubicina , Sistemas de Liberação de Medicamentos , Leucemia Mieloide Aguda , Vacúolos , Linhagem Celular Tumoral , Daunorrubicina/administração & dosagem , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lisossomos , Saccharomyces cerevisiae/genética , Vacúolos/metabolismo
13.
J Nanobiotechnology ; 20(1): 204, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477501

RESUMO

BACKGROUND: Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS: For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION: Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Glipicanas/metabolismo , Humanos , Neoplasias Hepáticas/patologia
14.
Appl Microbiol Biotechnol ; 105(23): 8715-8725, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34724081

RESUMO

All eukaryotes have lysosomes that contain hydrolytic enzymes, such as protease, that degrade waste materials and cellular fragments. As a cellular organelle, lysosomes function as the digestive system of the cell, serving both to degrade material taken up from outside the cell and to digest obsolete components of the cell itself. In a previous study, melanin compounds were bleached using lysosome-related organelle extract (LOE) in which glutathione peroxidase (GPX) contributed decisively to melanin decolorization. In this study, Saccharomyces cerevisiae was engineered to overproduce GPX, which increases the melanin color reduction activity of LOE. In addition, the peroxidase activity of the recombinant yeast was measured for each compartment. In spite of the modification to overexpress the GPX protein, with the peroxidase activity of the lysosome fraction specifically higher, the overall peroxidase activity of the cells remained constant. The overexpression of GPX2 among the GPX present in S. cerevisiae increased both the melanin-decolorization activity and the peroxidase activity of LOE. These results indicate that the peroxidase activity is related to the melanin decomposition and antioxidant enzymes such as GPX. In an artificial skin tissue test, the LOE extracted from the recombinant yeast was efficient in reducing the melanin. These results confirmed the enzyme's ability to penetrate corneous tissue, and they suggest the possibility of further development as a new whitening cosmetic. KEY POINTS: • Modification of Saccharomyces cerevisiae to overexpress glutathione peroxidase (GPX). • The lysosome fraction of the recombinant strain enhanced the decolorizing function. • The LOE penetrates the skin barrier and works effectively on artificial skin tissue.


Assuntos
Glutationa Peroxidase/biossíntese , Melaninas , Saccharomyces cerevisiae , Glutationa , Glutationa Peroxidase/genética , Lisossomos , Melaninas/metabolismo , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética
15.
Biosci Rep ; 41(9)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34558607

RESUMO

Vacuoles are membrane vesicles in eukaryotic cells, the digestive system of cells that break down substances absorbed outside the cell and digest the useless components of the cell itself. Researches on anticancer and intractable diseases using vacuoles are being actively conducted. The practical application of the present study to animals requires the determination of the biocompatibility of vacuole. In the present study, we evaluated the effects of vacuoles isolated from Saccharomyces cerevisiae in RAW 264.7 cells. This showed a significant increase in the production of nitric oxide (NO) produced by macrophage activity. Using Reactive Oxygen Species (ROS) assay, we identified that ROS is increased in a manner dependent on vacuole concentration. Western blot analysis showed that vacuole concentration-dependently increased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). Therefore, iNOS expression was stimulated to induce NO production. In addition, pro-inflammatory cytokines levels promoted, such as interleukin (IL) 6 (IL-6) and tumor necrosis factor (TNF) α (TNF-α). In summary, vacuoles activate the immune response of macrophages by promoting the production of immune-mediated transporters NO, ROS, and pro-inflammatory cytokines.


Assuntos
Mediadores da Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Saccharomyces cerevisiae/imunologia , Vacúolos/imunologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Vacúolos/transplante
16.
Biosci Rep ; 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427306

RESUMO

Vacuoles are membrane vesicles in eukaryotic cells, the digestive system of cells that break down substances absorbed outside the cell and digest the useless components of the cell itself. Researches on anti-cancer and intractable diseases using vacuoles are being actively conducted. The practical application of this study to animals requires the determination of the biocompatibility of vacuole. In the present study, we evaluated the effects of vacuoles isolated from S. cerevisiae in RAW264.7 cells. This showed a significant increase in the production of nitric oxide produced by macrophage activity. Using Reactive Oxygen Species (ROS) Assay, we identified that ROS is increased in a manner dependent on vacuole concentration. Western blot analysis showed that vacuole concentration-dependently increased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). Therefore, iNOS expression was stimulated to induce Nitric oxide (NO) production. In addition, pro-inflammatory cytokines levels promoted, such as interleukin 6 and tumor necrosis factor -α. In summary, vacuoles activate the immune response of macrophages by promoting the production of immune-mediated transporters NO, ROS, and pro-inflammatory cytokines.

17.
Mol Biotechnol ; 62(11-12): 557-562, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949367

RESUMO

The study of senescence preservative on cut flowers helps boost the commercial value of flowers. Senescence in cut flower is associated with an increase of ethylene production, and is significantly influenced by ethylene pathway. This study was conducted to investigate whether S-adenosyl-L-methionine (SAM) and aminocyclopropane-1-carboxylic acid (ACC) involved in the ethylene synthesis process are correlated with the lysosome. The alterations of lysosome which was treated with the ethylene precursors ACC and SAM in HeLa cell using the confocal laser scanning microscope were investigated. According to the experimental results, the activity of lysosomes increased concentration dependently by ACC treatment, however, no change was observed by SAM treatment. In addition, Liquid chromatography-mass spectrometry (LC/MS) analysis was performed to confirm the effect of lysosomal enzyme (LE) extracted from egg white on ACC reduction, but no change was observed. On the contrary, to confirm the effect of ACC on lysosomes, lysosomes were extracted from HeLa cells treated with 5 mM ACC and confirmed by FE-SEM. The results showed that the size of lysosomes treated with ACC is larger than that of the control, which was treated with distilled water. The lysosomes in the control group were distributed in various ranges from 0 to 800 nm, but those treated with 5 mM ACC were in the range of 400 nm to 800 nm or more. Therefore, lysosomes had no effect on ACC, the precursor of ethylene, the aging hormone of cut flowers, however, ACC had effect on lysosomes.


Assuntos
Aminoácidos Cíclicos/farmacologia , Lisossomos/ultraestrutura , S-Adenosilmetionina/farmacologia , Cromatografia Líquida , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Espectrometria de Massas , Microscopia Confocal , Tamanho da Partícula
18.
Environ Pollut ; 267: 115479, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892011

RESUMO

Parabens are alkyl esters of 4-hydroxybenzoic acid, which is derived from a family of synthetic esters of p-hydroxybenzoic acid. Among all the kinds of paraben, two parabens (methyl paraben, MP; and n-propyl paraben, PP) are the most generally used as preservatives in personal care products, such as cosmetics, pharmaceuticals, and food also, and are often presented together. However, a number of studies have reported that the toxicity of parabens affects the water environment, and human as well. This study utilized M13 phage display technology to provide easy, efficient, and relatively inexpensive methods to identify peptides that bind to MP and PP, respectively, to remove in wastewater. At first, biopanning was performed, to sort MP and PP specific binding phages, and three cases of experiment, including negative control (NC), which could sort unspecific binding phage, were conducted at the same time. Phage binding affinity tests were substituted by concentration reduction using antibody conjugated magnetic beads, and paraben concentration was measured by HPLC. Analysis showed that the MP concentration reduction of 38% was the highest in M4 phage, while the PP concentration reduction of 44% was the highest in P3 phage. We successfully screened two peptides specific to MP and PP, namely, MP4 and PP3, respectively; the results showed that the MP concentration reduction in MP4 was the highest at 44%, and the PP concentration reduction in PP3 was the highest at 39%, and their specificity was measured by the capture rate between target and control. In conclusion, the phage display technique shows applicability to the removal of parabens in water; furthermore, it also shows the possibility of the detection or removal of other chemicals.


Assuntos
Bacteriófagos , Parabenos , Técnicas de Visualização da Superfície Celular , Humanos , Peptídeos , Conservantes Farmacêuticos
19.
Mol Biotechnol ; 62(5): 273-279, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166528

RESUMO

Trans-2-nonenal is a fatty aldehyde with a long-chain, containing nine carbons. It was known that trans-2-nonenal is a cause of the odor associated with aging, and mainly found from the ages of 40 years. Phage display was a famous laboratory technique for proteins, peptides, and DNA interaction using bacteriophages to connect proteins with the genetic information. In this study, we have carried out random phage display screening to identify specific binding peptides for trans-2-nonenal. Trans-2-nonenal was directly coated on the plate. To select the phages against trans-2-nonenal, the random phages were attached to trans-2-nonenal and selected by 1-5 panning steps. Individual DNA of phage after 5 panning was analyzed to find the specific peptide sequence against trans-2-nonenal. The affinity of positive and negative binding phages was verified by ELISA assay using M13 phage-specific antibody. Among the phages, the phage with sequence of AHKSKLHQHVMFGGG (called as P4) in the end of tail, has shown the highest response. To explore a role of the peptide selected in sequence analysis and ELISA assay, the peptide was connected to magnetic beads. The peptide-coated beads were treated within trans-2-nonenal: treatment of P4 peptide shows significant decrease of trans-2-nonenal compared to negative peptide. Based on our results, it is suggested that the peptide, which is selected by phage display, could be used for the removal of trans-2-nonenal and odor associated with aging.


Assuntos
Aldeídos/análise , Técnicas de Visualização da Superfície Celular/métodos , Peptídeos/genética , Aldeídos/metabolismo , Sequência de Aminoácidos , Fenômenos Magnéticos , Biblioteca de Peptídeos , Peptídeos/metabolismo
20.
J Biotechnol ; 308: 118-123, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31846628

RESUMO

Lysosome, an intracellular organelle with an acid interior, contains acidic hydrolases and specific membrane proteins. Saccharomyces cerevisiae contains vacuoles (corresponding to lysosomes) that have similar lipid composition membrane to mammalian cell membrane. However, yeast vacuoles do not cause significant immune stimulation in vivo. Taking advantage of these structural similarities and bio-derived strengths, the present study describes encapsulation of daunorubicin into lysosome derived from S. cerevisiae as drug delivery vehicles for acute myeloid leukemia (AML) treatment. Daunorubicin is a chemotherapy medication used to treat cancer, specifically for AML. In this study, recombinant S. cerevisiae that could keep the small size of lysosomal vacuoles was constructed. Appropriate time and concentration to encapsulate the drug were then identified. In addition, release profile and anticancer effect of the drug in lysosome carriers were confirmed. According to this study, a more accurate encapsulation condition into lysosome can be optimized and potential application of S. cerevisiae derived lysosomes as drug carriers is confirmed.


Assuntos
Daunorrubicina/farmacologia , Lisossomos/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Proteínas rab de Ligação ao GTP/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/química , Composição de Medicamentos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisossomos/genética , Tamanho da Partícula , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA