Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Phytother Res ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402821

RESUMO

Breast cancer (BC) is the most prevalent malignancy among women, with millions of newly diagnosed cases emerging annually. Therefore, identifying novel pharmaceuticals for therapeutic purposes is imperative. Several natural compounds and their products have demonstrated potential in the treatment of cancer. This study examined the effects of the ginger derivative 1-dehydro-6-gingerdione (1-D-6-G) on BC and its mechanisms of action. MTT and colony formation assays were used to check the anticancer effect of 1-D-6-G. Then the anticancer mechanism of 1-D-6-G was predicted using proteomics analysis. The molecular pathway was verified by qRT-PCR and immunobloting analysis. Additionally, the anticancer properties of 1-D-6-G were investigated in vivo using xenograft mice model. Finally, an in silico study was conducted to examine the interaction of 1-D-6-G and pathway-related proteins. MTT and colony formation assay results indicated that 1-D-6-G has potent cytotoxic properties against BC cells. Proteomic analysis revealed that the anticancer mechanism of 1-D-6-G on MDA-MB-231 cells is associated with the ferroptosis signaling pathway. In addition, qRT-PCR and immunoblotting analyses revealed that the cytotoxic effects of 1-D-6-G on MDA-MB-231 cells were associated with ferroptosis signaling induction. Our in vivo results further confirmed the in vitro findings. The administration of 1-D-6-G for 14 days exhibited anticancer properties in xenograft mice by stimulating the ferroptosis pathway without causing damage to essential organs such as the liver and kidneys. Additionally, in silico results confirmed the structural stability of the molecular interaction between 1-D-6-G and ferroptosis target proteins. Our findings indicate that 1-D-6-G has the potential to serve as a novel therapeutic agent for inhibiting BC progression by targeting the ferroptosis pathway.

2.
J Natl Cancer Inst ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325856

RESUMO

We conducted an extensive assessment and quantification of the reach of the oncology clinical trial supporting infrastructure in the United States (US). While our primary focus was on identifying avenues to expand the reach of neuro-oncology clinical trials, we considered infrastructure layers with important implications for broader cancer research and care. Specifically, we examined the geographic, population, and socioeconomic reach of national collaboratives (including over 1,500 institutions), over 600 academic oncology and neurosurgery training programs, and networks of over 25,000 individual neuro-oncology, neurosurgery, and general oncology (including hematology/medical/gynecological oncology, surgical oncology, and radiation oncology) providers. Our study found that over 57% of the US population lacks direct access to trial-supporting infrastructure. More than 71% of the locations with infrastructure are urban, and over 72% are in socioeconomically-advantaged areas. Our findings reveal critical disparities in oncology care access and suggest actionable strategies to optimize and expand the existing infrastructure's reach.\.

3.
ACS Omega ; 9(24): 25932-25944, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911731

RESUMO

Ferroptosis and apoptosis are programmed cell death pathways with distinct characteristics. Sometimes, cancer cells are aided by the induction of a different pathway, such as ferroptosis, when they develop chemoresistance and avoid apoptosis. Identifying the nanomedicine that targets dual pathways is considered as one of the best strategies for diverse cancer types. In our previous work, we synthesized gold nanoparticles (GNP) utilizing Gluconacetobacter liquefaciens in conjunction with compound K (CK) and coprisin (CopA3), yielding GNP-CK-CopA3. Here, we assessed the inhibitory effect of GNP-CK-CopA3 on AGS cells and the induction of apoptosis using Hoechst and PI, Annexin V-FITC/PI, and qRT-PCR. Subsequently, we conducted downstream proteomic analysis and molecular dynamic stimulation to identify the underlying molecular mechanisms. Our investigation of cultured AGS cells treated with varying concentrations of GNP-CK-CopA3 demonstrated the anticancer properties of these nanoparticles. Penetration of GNP-CK-CopA3 into AGS cells was visualized using an enhanced dark field microscope. Apoptosis induction was initially confirmed by treating AGS cells with GNP-CK-CopA3, as evidenced by staining with dyes such as Hoechst and PI. Additionally, mitochondrial disruption and cellular localization induced by GNP-CK-CopA3 were validated through Mito-tracker staining and transmission electron microscopy images. Annexin V-FITC/PI staining was used to distinguish early and late-stage apoptosis or necrosis based on fluorescence patterns. The gene expression of apoptotic markers indicated the initiation of cellular apoptosis. Further, proteomic analysis suggested that the treatment of GNP-CK-CopA3 to AGS cells led to the suppression of 439 proteins and the stimulation of 832 proteins. Among these, ferroptosis emerged as a significant interconnected pathway where glutathione peroxidase 4 (GPX4) and glutathione synthetase (GSS) were significant interacting proteins. Molecular docking and dynamic simulation studies confirmed the binding affinity and stability between CopA3 and CK with GSS and GPX4 proteins, suggesting the role of GNP-CK-CopA3 in ferroptosis induction. Overall, our study showed GNP-CK-CopA3 could play a dual role by inducing apoptosis and ferroptosis to induce AGS cell death.

4.
ACS Pharmacol Transl Sci ; 7(6): 1884-1900, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898949

RESUMO

The PI3K/AKT/FOXO3 pathway is one of the most frequently involved signaling pathways in cancer, including breast cancer. Therefore, we synthesized a novel lysine-rich polypeptide (Lys-PP) using de novo assembly method and evaluated its anticancer effect. We characterized the structural and physicochemical properties of Lys-PP using various techniques. Later, we used integrated approaches such as in silico, in vitro, and in vivo analysis to confirm the anticancer and therapeutic effect of Lys-PP. First, RNA sequencing suggests Lys-PP disrupted the central carbon metabolic pathway through the modulation of prolactin signaling. Additionally, docking analysis also confirmed the significant association of PI3K/AKT and FOXO3 pathway to induce an apoptotic effect on cancer. Second, Lys-PP exhibited a significant cytotoxicity effect against MDA-MB-231 but no cytotoxic effects on RAW 264.7 and HEK-293, respectively. The cytotoxic effect of Lys-PP-induced apoptosis by an increase in FOXO3a protein expression and a decrease in PI3K/AKT pathway was confirmed by quantitative real-time polymerase chain reaction, immunoblotting, and fluorescent microscopy. Later, immunohistochemistry and hematoxylin and eosin staining on MDA-MD-231 showed increased FOXO3a expression and cell death in the xenograft mice model. Further, liver function, metabolic health, or lipid profile upon Lys-PP showed the absence of significant modulation in the biomarkers except for kidney-related biomarkers. Overall, our comprehensive study provides the first evidence of Lys-PP antibreast cancer action, which could serve as a potential treatment in an alternative or complementary medicine practice.

5.
Front Immunol ; 15: 1285063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455053

RESUMO

Paraprobiotics that benefit human health have the capacity to modulate innate and adaptive immune systems. In this study, we prepared the paraprobiotic from Bacillus velezensis GV1 using the heat-killing method and investigated its effects on immunity and gut microbiota in vitro and in vivo. The morphology of inactivated strain GV1 was observed using scanning electron microscopy. Treatment with GV1 promoted nitric oxide production and augmented cytokine (IL-6, IL-1ß, and TNF-α) expression and secretion in RAW 264.7 macrophages. Moreover, the strain GV1 could alleviate cyclophosphamide monohydrate (CTX)-induced immunosuppression by reversing spleen damage and restoring the immune organ index, as well as by increasing the expression of immune-related cytokines (TNF-α, IL-1ß, IFN-γ, and IL-2) in the spleen and thymus, respectively. Furthermore, GV1 treatment dramatically healed the CTX-damaged colon and regulated gut microbiota by increasing the relative abundance of beneficial bacterial families (Lactobacillaceae, Akkermansiaceae, and Coriobacteriaceae) and decreasing that of harmful bacterial families (Desulfovibrionaceae, Erysipelotrichaceae, and Staphylococcaceae). Thus, the heat-killed GV1 can be considered a potential immunoregulatory agent for use as a functional food or immune-enhancing medicine.


Assuntos
Bacillus , Microbioma Gastrointestinal , Fator de Necrose Tumoral alfa , Camundongos , Humanos , Animais , Ciclofosfamida/farmacologia , Citocinas/metabolismo , Macrófagos , Imunidade
6.
Trends Endocrinol Metab ; 35(8): 732-744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453603

RESUMO

Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.


Assuntos
Senescência Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Senescência Celular/fisiologia , Animais , Envelhecimento/metabolismo
7.
J Neurooncol ; 167(2): 349-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427131

RESUMO

PURPOSE: Multidisciplinary tumor boards (MTBs) integrate clinical, molecular, and radiological information and facilitate coordination of neuro-oncology care. During the COVID-19 pandemic, our MTB transitioned to a virtual and multi-institutional format. We hypothesized that this expansion would allow expert review of challenging neuro-oncology cases and contribute to the care of patients with limited access to specialized centers. METHODS: We retrospectively reviewed records from virtual MTBs held between 04/2020-03/2021. Data collected included measures of potential clinical impact, including referrals to observational or therapeutic studies, referrals for specialized neuropathology analysis, and whether molecular findings led to a change in diagnosis and/or guided management suggestions. RESULTS: During 25 meetings, 32 presenters discussed 44 cases. Approximately half (n = 20; 48%) involved a rare central nervous system (CNS) tumor. In 21% (n = 9) the diagnosis was changed or refined based on molecular profiling obtained at the NIH and in 36% (n = 15) molecular findings guided management. Clinical trial suggestions were offered to 31% (n = 13), enrollment in the observational NCI Natural History Study to 21% (n = 9), neuropathology review and molecular testing at the NIH to 17% (n = 7), and all received management suggestions. CONCLUSION: Virtual multi-institutional MTBs enable remote expert review of CNS tumors. We propose them as a strategy to facilitate expert opinions from specialized centers, especially for rare CNS tumors, helping mitigate geographic barriers to patient care and serving as a pre-screening tool for studies. Advanced molecular testing is key to obtaining a precise diagnosis, discovering potentially actionable targets, and guiding management.


Assuntos
Neoplasias do Sistema Nervoso Central , Pandemias , Humanos , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/terapia , Equipe de Assistência ao Paciente , Encaminhamento e Consulta
8.
J Sci Food Agric ; 104(4): 2272-2283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947475

RESUMO

BACKGROUND: Dietary interventions are crucial in modulating inflammation in humans. Strawberries are enjoyed by people of different ages as a result of their attractive phenotype and taste. In addition, the active compounds in strawberries may contribute to the reduction of inflammation. When developing new strawberry cultivars to address agricultural and environmental threats, the bioactivity of strawberries must be improved to maintain their health benefits. RESULTS: We determined the phytochemical contents of extracts from a new Korean strawberry cultivar, with the CN7 cultivar extract possessing the highest total polyphenol and flavonoid contents compared to the CN5 and Seolhyang cultivar extracts. The new Korean strawberry cultivars reduced the expression of inflammatory-related genes in lipopolysaccharide (LPS)-induced RAW264.7 cells via the nuclear factor-kappa B signaling pathway, indicating an anti-inflammatory effect. The CN7 cultivar showed greater bioactivity potential and the highest ellagic acid content; hence, we assessed the effect of the CN7 cultivar in an LPS-stimulated mouse model. The CN7 cultivar treatment demonstrated its effectiveness in reducing inflammation via the downregulation of inflammatory cytokines secretion and gene expression. CONCLUSION: The results obtained in the present study have revealed the observable differences of the newly developed strawberry cultivars with Seolhyang in mitigating inflammation induced by LPS. The enhanced phytochemical content of the CN7 cultivar extract may contribute to its improved anti-inflammatory effect. Therefore, it is crucial to maintain the nutritive benefits of strawberry during the development of new cultivation. © 2023 Society of Chemical Industry.


Assuntos
Fragaria , Animais , Camundongos , Humanos , Fragaria/química , Lipopolissacarídeos , Frutas/química , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/análise , Anti-Inflamatórios/metabolismo , Macrófagos , República da Coreia
9.
Front Pharmacol ; 14: 1258057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869754

RESUMO

Introduction: Recently, nanotechnology has emerged as a potential technique for skin generation, which has several treatment advantages, such as decreased drug cytotoxicity and enhanced skin penetration. Boehmeria tricuspis (BT) belongs to the Urticaceae family and is rich in phenolic and flavonoid compounds. In this study, we biosynthesized gold nanoparticles (BT-AuNPs) using BT extract to explore their anti-inflammatory and skin-moisturizing properties in keratinocytes. Methods: Field-emission transmission electron microscopy, energydispersive X-ray spectrometry, dynamic light scattering, and Fourier-transforminfrared spectroscopy were used to examine the synthesized BT-AuNPs. qRT-PCR, western blot, and ELISA were applied for investigating the effect of BT-AuNPs on anti-inflammation and moisturizing activity in HaCaT cells. Results: At concentrations below 200 µg/mL, BT-AuNPs had no cytotoxic effect on keratinocytes. BT-AuNPs dramatically alleviated the expression and secretion of inflammatory chemokines/cytokine, such as IL-6, IL-8, TARC, CTACK, and RANTES in keratinocytes stimulated by tumor necrosis factor-α/interferon-γ (T + I). These anti-inflammatory properties of BT-AuNPs were regulated by inhibiting the NF-κB and MAPKs signaling pathways. Furthermore, BT-AuNPs greatly promoted hyaluronic acid (HA) production by enhancing the expression of hyaluronic acid synthase genes (HAS1, HAS2, and HAS3) and suppressing the expression of hyaluronidase genes (HYAL1 and HYAL2) in HaCaT cells. Discussion: These results suggest that BT-AuNPs can be used as a promising therapeutic alternative for treating skin inflammation. Our findings provide a potential platform for the use of BT-AuNPs as candidates for treating inflammatory skin diseases and promoting skin health.

10.
Front Nutr ; 10: 1168095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621738

RESUMO

Dendropanax morbifera (DM), a medicinal plant, is rich in polyphenols and commonly used to treat cancer, inflammation, and thrombosis. However, to date, no study has been conducted on DM regarding the enormous drift of secondary metabolites of plants in different regions of the Republic of Korea and their effects on antiobesity, to explore compounds that play an important role in two major obesity-related pathways. Here, we present an in-depth study on DM samples collected from three regions of the Republic of Korea [Jeju Island (DMJ), Bogildo (DMB), and Jangheung (DMJG)]. We used high-performance liquid chromatography (HPLC) and multivariate component analyses to analyze polyphenol contents (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin), followed by discrimination of the samples in DMJG using single nucleotide polymorphism and chemometric analysis. In silico and in vitro evaluation of major compounds found in the plant extract on two major anti-obesity pathways (adipogenesis and thermogenesis) was carried out. Furthermore, two extraction methods (Soxhlet and ultrasound-assisted extraction) were used to understand which method is better and why. Upon quantifying plant samples in three regions with the polyphenols, DMJG had the highest content of polyphenols. The internal transcribed region (ITS) revealed a specific gel-based band for the authentication of DMJG. PCA and PLS-DA revealed the polyphenol's discriminative power of the region DMJG. The anti-obesity effects of plant extracts from the three regions were related to their polyphenol contents, with DMJG showing the highest effect followed by DMJ and DMB. Ultrasound-assisted extraction yielded a high number of polyphenols compared to that of the Soxhlet method, which was supported by scanning electron microscopy. The present work encourages studies on plants rich in secondary metabolites to efficiently use them for dietary and therapeutic purposes.

11.
Cancer Med ; 12(16): 16945-16957, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421295

RESUMO

BACKGROUND: Clinical outcome assessments (COAs) are key to patient-centered evaluation of novel interventions and supportive care. COAs are particularly informative in oncology where a focus on how patients feel and function is paramount, but their incorporation in trial outcomes have lagged that of traditional survival and tumor responses. To understand the trends of COA use in oncology and the impact of landmark efforts to promote COA use, we computationally surveyed oncology clinical trials in ClinicalTrials.gov comparing them to the rest of the clinical research landscape. METHODS: Oncology trials were identified using medical subject heading neoplasm terms. Trials were searched for COA instrument names obtained from PROQOLID. Regression analyses assessed chronological and design-related trends. RESULTS: Eighteen percent of oncology interventional trials initiated 1985-2020 (N = 35,415) reported using one or more of 655 COA instruments. Eighty-four percent of the COA-using trials utilized patient-reported outcomes, with other COA categories used in 4-27% of these trials. Likelihood of COA use increased with progressing trial phase (OR = 1.30, p < 0.001), randomization (OR = 2.32, p < 0.001), use of data monitoring committees (OR = 1.26, p < 0.001), study of non-FDA-regulated interventions (OR = 1.23, p = 0.001), and in supportive care versus treatment-focused trials (OR = 2.94, p < 0.001). Twenty-six percent of non-oncology trials initiated 1985-2020 (N = 244,440) reported COA use; they had similar COA-use predictive factors as oncology trials. COA use increased linearly over time (R = 0.98, p < 0.001), with significant increases following several individual regulatory events. CONCLUSION: While COA use across clinical research has increased over time, there remains a need to further promote COA use particularly in early phase and treatment-focused oncology trials.


Assuntos
Neoplasias , Humanos , Oncologia , Neoplasias/terapia , Avaliação de Resultados em Cuidados de Saúde , Projetos de Pesquisa , Ensaios Clínicos como Assunto
12.
Neuro Oncol ; 25(9): 1658-1671, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757281

RESUMO

BACKGROUND: Limitations in trial design, accrual, and data reporting impact efficient and reliable drug evaluation in cancer clinical trials. These concerns have been recognized in neuro-oncology but have not been comprehensively evaluated. We conducted a semi-automated survey of adult interventional neuro-oncology trials, examining design, interventions, outcomes, and data availability trends. METHODS: Trials were selected programmatically from ClinicalTrials.gov using primary malignant central nervous system tumor classification terms. Regression analyses assessed design and accrual trends; effect size analysis utilized survival rates among trials investigating survival. RESULTS: Of 3038 reviewed trials, most trials reporting relevant information were nonblinded (92%), single group (65%), nonrandomized (51%), and studied glioblastomas (47%) or other gliomas. Basic design elements were reported by most trials, with reporting increasing over time (OR = 1.24, P < .00001). Trials assessing survival outcomes were estimated to assume large effect sizes of interventions when powering their designs. Forty-two percent of trials were completed; of these, 38% failed to meet their enrollment target, with worse accrual over time (R = -0.94, P < .00001) and for US versus non-US based trials (OR = 0.5, P < .00001). Twenty-eight percent of completed trials reported partial results, with greater reporting for US (34.6%) versus non-US based trials (9.3%, P < .00001). Efficacy signals were detected by 15%-23% of completed trials reporting survival outcomes. CONCLUSION: Low randomization rates, underutilization of controls, and overestimation of effect size, particularly pronounced in early-phase trials, impede generalizability of results. Suboptimal designs may be driven by accrual challenges, underscoring the need for cooperative efforts and novel designs. The limited results reporting highlights the need to incentivize data reporting and harmonization.


Assuntos
Neoplasias , Adulto , Humanos , Projetos de Pesquisa , Ensaios Clínicos como Assunto
13.
Pharmacol Res ; 187: 106610, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521573

RESUMO

Gastric cancer (GC) occurs in the gastric mucosa, and its high morbidity and mortality make it an international health crisis. Therefore, novel drugs are needed for its treatment. The use of natural products and their components in cancer treatments has shown promise. Therefore, this study aimed to evaluate the effect of 8-paradol, a phenolic compound isolated from ginger (Zingiber officinale Roscoe), on GC and determine its underlying mechanisms of action. In this study, repeated column chromatography was conducted on ginger EtOH extract to isolate gingerol and its derivatives. The cytotoxicity of the eight ginger compounds underwent a (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) tetrazolium reduction (MTT) assay. 8-paradol showed the most potent cytotoxicity effect among the isolated ginger compounds. The underlying mechanism by which 8-paradol regulated specific proteins in AGS cells was evaluated by proteomic analysis. To validate the predicted mechanisms, AGS cells and thymus-deficient nude mice bearing AGS xenografts were used as in vitro and in vivo models of GC, respectively. The results showed that the 8-paradol promoted PINK1/Parkin-associated mitophagy, mediating cell apoptosis. Additionally, the inhibition of mitophagy by chloroquine (CQ) ameliorated 8-paradol-induced mitochondrial dysfunction and apoptosis, supporting a causative role for mitophagy in the 8-paradol-induced anticancer effect. Molecular docking results revealed the molecular interactions between 8-paradol and mitophagy-/ apoptosis-related proteins at the atomic level. Our study provides strong evidence that 8-paradol could act as a novel potential therapeutic agent to suppress the progression of GC by targeting mitophagy pathway.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Zingiber officinale , Camundongos , Animais , Humanos , Zingiber officinale/química , Zingiber officinale/metabolismo , Mitofagia , Neoplasias Gástricas/tratamento farmacológico , Camundongos Nus , Simulação de Acoplamento Molecular , Proteômica , Apoptose , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
ACS Omega ; 7(47): 42723-42732, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467957

RESUMO

Silymarin exhibits an anti-inflammatory property in various cancers and inflammatory diseases. In our previous work, silymarin-mediated selenium nanoparticles (SeNPs) (Si-SeNPs) were developed using a green synthesis technique, and its potential as an anticancer agent was confirmed. In order to further examine the extended comprehensive potential of Si-SeNPs, this investigation focuses on studying the enhanced anti-inflammatory effect of Si-SeNPs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction were used to evaluate the expression of pro-inflammatory mediators and cytokines. Western blotting and immunofluorescence assays were conducted to assess the protein expression of p-PI3K, p-Akt, p-NF-κB, and p-IκBα. Compared to silymarin, Si-SeNPs exhibited a significantly increased inhibitory effect on LPS-induced release of nitric oxide and the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin 1ß (IL-1ß) in RAW264.7 cells. A western blot assay indicated that Si-SeNPs downregulated the PI3K/Akt and NF-κB signaling pathways. The immunofluorescence assay suggested that Si-SeNPs inhibited the nuclear translocation and the activation of NF-κB. In addition, 740 Y-P (PI3K agonist) was used to demonstrate that activating the PI3K/Akt signal could partially reverse the inflammatory response, suggesting a causal role of the PI3K/Akt signaling pathway in the anti-inflammatory effect of Si-SeNPs. Consequently, these findings indicate that Si-SeNPs could be a functional agent of the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages through inhibiting the PI3K/Akt/NF-κB signaling pathway. In addition, biosynthesized Si-SeNPs could be more effective at reducing inflammation than only silymarin extracts. Thus, this study lays an experimental foundation for the clinical application of using biosynthesized SeNPs as a novel candidate in the field of inflammation-associated diseases.

17.
Front Pharmacol ; 13: 1055378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386212

RESUMO

Recently, green synthesis-based nanoformulations using plants or microorganisms have attracted great interest because of their several advantages. Nanotechnology-based biological macromolecules are emerging materials with potential applications in cosmetics and medications for ameliorating and treating inflammatory skin diseases (ISDs). Eupatorium japonicum (EJ), a native Korean medicinal plant belonging to the family Asteraceae, has been traditionally used to prepare prescriptions for the treatment of various inflammatory diseases. EJ-based gold nanoparticles (EJ-AuNPs) were biosynthesized under optimal conditions and characterized their physicochemical properties using various microscopic and spectrometric techniques. Additionally, the effects of EJ-AuNPs on ISDs as well as their underlying mechanisms were investigated in the tumor necrosis factor-α/interferon-γ (T+I)-induced skin HaCaT keratinocytes. The MTT and live/dead cell staining assays showed that EJ-AuNP treatment was considerably safer than EJ treatment alone in HaCaT cells. Moreover, EJ-AuNP treatment effectively suppressed the production of T+I-stimulated inflammatory cytokines (RANTES, TARC, CTACK, IL-6, and IL-8) and intracellular reactive oxygen species, and such EJ-driven anti-inflammatory effects were shown to be associated with the downregulation of intracellular mitogen-activated protein kinase and nuclear factor-κB signaling pathways. The present study provides preliminary results and a valuable strategy for developing novel anti-skin dermatitis drug candidates using plant extract-based gold nanoparticles.

18.
Int J Biol Sci ; 18(15): 5809-5826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263176

RESUMO

Plant extract-mediated synthesis of metal nanoparticles (NPs) is an eco-friendly and cost-effective biosynthesis method that is more suitable for biological applications than chemical ones. We prepared novel gold NPs (AuNPs), Cirsium japonicum mediated-AuNPs (CJ-AuNPs), using a biosynthetic process involving Cirsium japonicum (Herba Cirsii, CJ) ethanol extract. The physicochemical properties of CJ-AuNPs were characterized using spectrometric and microscopic analyses. The in vitro stability of CJ-AuNPs was studied for 3 months. Moreover, the selective human gastric adenocarcinoma (AGS) cell killing ability of CJ-AuNPs was verified in cancer and normal cells. An in vitro study revealed that CJ-AuNPs trigger oxidative stress and iron-dependent ferroptosis in AGS cells. Mechanistically, CJ-AuNPs induced mitochondrial reactive oxygen species (ROS), Fe2+, and lipid peroxidation accumulation, and mitochondrial damage by destroying the glutathione peroxidase-4 (GPX4)-dependent antioxidant capacity. Furthermore, in a xenograft mouse model implanted with AGS cells, treatment with 2.5, 5, and 10 mg/kg CJ-AuNPs for 16 days reduced tumor xenograft growth in a dose dependent manner in vivo without systemic toxicity. These results demonstrate that CJ-AuNPs exert anticancer effects in vitro and in vivo by inducing ferroptosis-mediated cancer cell death. This study, based on green-synthesized nanodrug-induced ferroptosis, provides new insight into potential developments in cancer therapies.


Assuntos
Cirsium , Nanopartículas Metálicas , Neoplasias Gástricas , Humanos , Camundongos , Animais , Cirsium/química , Cirsium/metabolismo , Ouro/química , Ouro/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Glutationa Peroxidase , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Etanol , Ferro
19.
ACS Omega ; 7(40): 35951-35960, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249362

RESUMO

Nanotechnology-applied materials and related therapeutics have gained attention for treating inflammatory skin diseases. The beach rose (Rosa rugosa), belonging to the family Rosaceae, is a perennial, deciduous woody shrub endemic to northeastern Asia. In this study, R. rugosa-based gold nanoparticles (RR-AuNPs) were biologically synthesized under optimal conditions to explore their potential as anti-inflammatory agents for treating skin inflammation. The synthesized RR-AuNPs were analyzed using field emission-transmission electron microscopy, energy-dispersive X-ray spectrometry, selected-area electron diffraction, and X-ray diffraction. The uniformly well-structured AuNPs showed near-spherical and polygonal shapes. Cell viability evaluation and optical observation results showed that the RR-AuNPs were absorbed by human keratinocytes without causing cytotoxic effects. The effects of RR-AuNPs on the skin inflammatory response were investigated in human keratinocytes treated with tumor necrosis factor-α/interferon-γ (T + I). The results showed that T + I-stimulated increases in inflammatory mediators, including chemokines, interleukins, and reactive oxygen species, were significantly suppressed by RR-AuNP treatment in a concentration-dependent manner. The western blotting results indicated that the RR-AuNP-mediated anti-inflammatory effects were highly associated with the suppression of inflammatory signaling, mitogen-activated protein kinase, and nuclear factor-κB. These results demonstrate that plant extract-based AuNPs are novel anti-inflammatory candidates for topical application to treat skin inflammation.

20.
J Nanobiotechnology ; 20(1): 441, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209164

RESUMO

BACKGROUND: Despite being a promising strategy, current chemotherapy for gastric cancer (GC) is limited due to adverse side effects and poor survival rates. Therefore, new drug-delivery platforms with good biocompatibility are needed. Recent studies have shown that nanoparticle-based drug delivery can be safe, eco-friendly, and nontoxic making them attractive candidates. Here, we develop a novel selenium-nanoparticle based drug-delivery agent for cancer treatment from plant extracts and selenium salts. RESULTS: Selenium cations were reduced to selenium nanoparticles using Kaempferia parviflora (black ginger) root extract and named KP-SeNP. Transmission electron microscopy, selected area electron diffraction, X-ray diffraction, energy dispersive X-ray, dynamic light scattering, and Fourier-transform infrared spectrum were utilized to confirm the physicochemical features of the nanoparticles. The KP-SeNPs showed significant cytotoxicity in human gastric adenocarcinoma cell (AGS cells) but not in normal cells. We determined that the intracellular signaling pathway mechanisms associated with the anticancer effects of KP-SeNPs involve the upregulation of intrinsic apoptotic signaling markers, such as B-cell lymphoma 2, Bcl-associated X protein, and caspase 3 in AGS cells. KP-SeNPs also caused autophagy of AGS by increasing the autophagic flux-marker protein, LC3B-II, whilst inhibiting autophagic cargo protein, p62. Additionally, phosphorylation of PI3K/Akt/mTOR pathway markers and downstream targets was decreased in KP-SeNP-treated AGS cells. AGS-cell xenograft model results further validated our in vitro findings, showing that KP-SeNPs are biologically safe and exert anticancer effects via autophagy and apoptosis. CONCLUSIONS: These results show that KP-SeNPs treatment of AGS cells induces apoptosis and autophagic cell death through the PI3K/Akt/mTOR pathway, suppressing GC progression. Thus, our research strongly suggests that KP-SeNPs could act as a novel potential therapeutic agent for GC.


Assuntos
Nanopartículas , Selênio , Neoplasias Gástricas , Zingiber officinale , Apoptose , Autofagia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Zingiber officinale/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piruvatos , Sais/farmacologia , Sais/uso terapêutico , Selênio/farmacologia , Selênio/uso terapêutico , Transdução de Sinais , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA