Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Int Orthop ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717609

RESUMO

PURPOSE: We hypothesized that multiple absorbable screws/K-wires would be effective for native head preservation in comminuted radial head fracture fixation (com-RHFs). METHODS: Seventeen patients who met the inclusion criteria between 2018 and 2020 were included. Radiologic findings indicating proper union and clinical outcomes such as the range of elbow motion, visual analog scale score, and Mayo Elbow Performance Score were assessed prospectively after surgery and at least three years of follow-up. RESULTS: The mean follow-up period was 4.6 years. Eleven, one, three, and two patients presented with isolated com-RHFs, type 2 (accompanied injury of medial collateral ligament), type 4 ("terrible triad") fractures, and type 5 posterior olecranon fracture-dislocations, respectively. Union was achieved after a mean of nine weeks postoperatively. The head and shaft angles did not differ significantly from the contralateral normal values (p = 0.778 and 0.872, coronal and sagittal, respectively). At the final follow-up, the mean flexion-extension/pronation-supination arcs were 126.47 ± 4.92°/135.59 ± 10.13°, and thus were significantly different from those on the contralateral side (p < 0.001, both), however the arcs were functional ranges for ordinary daily life. Also, functional status was satisfactory in all individuals. The arthritis grade and extent of heterotrophic ossification were satisfactory in all cases, and there were no serious complications requiring revision surgery. CONCLUSIONS: Absorbable screw/K-wire fixation for com-RHFs is an option before radial head arthroplasty associated with a low complication rate and no need for revision.

2.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257395

RESUMO

Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.


Assuntos
Autofagia , Ciclopropanos , Macroautofagia , Pirrolidinas , Tiazóis , Humanos , Células HeLa , Homeostase , Proteína Supressora de Tumor Von Hippel-Lindau/genética
3.
Bioresour Technol ; 394: 130248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158090

RESUMO

Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.


Assuntos
Gases , Engenharia de Proteínas , Hidrogênio/metabolismo , Catálise , Monóxido de Carbono/metabolismo , Dióxido de Carbono
4.
Front Bioeng Biotechnol ; 11: 1265272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854886

RESUMO

It is challenging to capture carbon dioxide (CO2), a major greenhouse gas in the atmosphere, due to its high chemical stability. One potential practical solution to eliminate CO2 is to convert CO2 into formate using hydrogen (H2) (CO2 hydrogenation), which can be accomplished with inexpensive hydrogen from sustainable sources. While industrial flue gas could provide an adequate source of hydrogen, a suitable catalyst is needed that can tolerate other gas components, such as carbon monoxide (CO) and oxygen (O2), potential inhibitors. Our proposed CO2 hydrogenation system uses the hydrogenase derived from Ralstonia eutropha H16 (ReSH) and formate dehydrogenase derived from Methylobacterium extorquens AM1 (MeFDH1). Both enzymes are tolerant to CO and O2, which are typical inhibitors of metalloenzymes found in flue gas. We have successfully demonstrated that combining ReSH- and MeFDH1-immobilized resins can convert H2 and CO2 in real flue gas to formate via a nicotinamide adenine dinucleotide-dependent cascade reaction. We anticipated that this enzyme system would enable the utilization of diverse H2 and CO2 sources, including waste gases, biomass, and gasified plastics.

5.
Bioengineering (Basel) ; 10(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892952

RESUMO

The respiratory rate (RR) is a significant indicator to evaluate a patient's prognosis and status; however, it requires specific instrumentation or estimates from other monitored signals. A photoplethysmogram (PPG) is extensively used in clinical environments as well as in intensive care units (ICUs) to primarily monitor peripheral circulation while capturing indirect information about intrathoracic pressure changes. This study aims to apply and evaluate several deep learning models using a PPG for the continuous and accurate estimation of the RRs of patients. The dataset was collected twice for 2 min each in 100 patients aged 18 years and older from the surgical intensive care unit of a tertiary referral hospital. The BIDMC and CapnoBase public datasets were also analyzed. The collected dataset was preprocessed and split according to the 5-fold cross-validation. We used seven deep learning models, including our own Dilated Residual Neural Network, to check how accurately the RR estimates match the ground truth using the mean absolute error (MAE). As a result, when validated using the collected dataset, our model showed the best results with a 1.2628 ± 0.2697 MAE on BIDMC and RespNet and with a 3.1268 ± 0.6363 MAE on our dataset, respectively. In conclusion, RR estimation using PPG-derived models is still challenging and has many limitations. However, if there is an equal amount of data from various breathing groups to train, we expect that various models, including our Dilated ResNet model, which showed good results, can achieve better results than the current ones.

6.
Mol Brain ; 16(1): 41, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170364

RESUMO

The primary cilium, an antenna-like structure on the cell surface, acts as a mechanical and chemical sensory organelle. Primary cilia play critical roles in sensing the extracellular environment to coordinate various developmental and homeostatic signaling pathways. Here, we showed that the depletion of heat shock protein family A member 9 (HSPA9)/mortalin stimulates primary ciliogenesis in SH-SY5Y cells. The downregulation of HSPA9 enhances mitochondrial stress by increasing mitochondrial fragmentation and mitochondrial reactive oxygen species (mtROS) generation. Notably, the inhibition of either mtROS production or mitochondrial fission significantly suppressed the increase in primary ciliogenesis in HSPA9-depleted cells. In addition, enhanced primary ciliogenesis contributed to cell survival by activating AKT in SH-SY5Y cells. The abrogation of ciliogenesis through the depletion of IFT88 potentiated neurotoxicity in HSPA9-knockdown cells. Furthermore, both caspase-3 activation and cell death were increased by MK-2206, an AKT inhibitor, in HSPA9-depleted cells. Taken together, our results suggest that enhanced primary ciliogenesis plays an important role in preventing neurotoxicity caused by the loss of HSPA9 in SH-SY5Y cells.


Assuntos
Neuroblastoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Apoptose , Estresse Oxidativo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/metabolismo
7.
Circ Res ; 132(1): 52-71, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448450

RESUMO

BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.


Assuntos
Aterosclerose , Calcinose , Placa Aterosclerótica , Calcificação Vascular , Camundongos , Humanos , Animais , Músculo Liso Vascular/metabolismo , Células Cultivadas , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Calcinose/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA/metabolismo , Calcificação Vascular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Tiorredoxinas/metabolismo
8.
Angiogenesis ; 26(1): 167-186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36348215

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a genetic vascular disorder characterized by the presence of arteriovenous malformation (AVM) in multiple organs. HHT is caused by mutations in genes encoding major constituents for transforming growth factor-ß (TGF-ß) family signaling: endoglin (ENG), activin receptor-like kinase 1 (ALK1), and SMAD4. The identity of physiological ligands for this ENG-ALK1 signaling pertinent to AVM formation has yet to be clearly determined. To investigate whether bone morphogenetic protein 9 (BMP9), BMP10, or both are physiological ligands of ENG-ALK1 signaling involved in arteriovenous network formation, we generated a novel Bmp10 conditional knockout mouse strain. We examined whether global Bmp10-inducible knockout (iKO) mice develop AVMs at neonatal and adult stages in comparison with control, Bmp9-KO, and Bmp9/10-double KO (dKO) mice. Bmp10-iKO and Bmp9/10-dKO mice showed AVMs in developing retina, postnatal brain, and adult wounded skin, while Bmp9-KO did not display any noticeable vascular defects. Bmp10 deficiency resulted in increased proliferation and size of endothelial cells in AVM vessels. The impaired neurovascular integrity in the brain and retina of Bmp10-iKO and Bmp9/10-dKO mice was detected. Bmp9/10-dKO mice exhibited the lethality and vascular malformation similar to Bmp10-iKO mice, but their phenotypes were more pronounced. Administration of BMP10 protein, but not BMP9 protein, prevented retinal AVM in Bmp9/10-dKO and endothelial-specific Eng-iKO mice. These data indicate that BMP10 is indispensable for the development of a proper arteriovenous network, whereas BMP9 has limited compensatory functions for the loss of BMP10. We suggest that BMP10 is the most relevant physiological ligand of the ENG-ALK1 signaling pathway pertinent to HHT pathogenesis.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Animais , Camundongos , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células Endoteliais/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Malformações Arteriovenosas/patologia , Camundongos Knockout , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo
9.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558102

RESUMO

Esculetin is a coumarin-derived compound with antioxidant and anti-inflammatory properties. The current study aims to evaluate the therapeutic implications of esculetin on retinal dysfunction and uncover the underlying mechanisms. Tert-butyl hydroperoxide (t-BHP) at a concentration of 300 µM was used to induce oxidative stress in human retinal pigment epithelial cell line (ARPE-19) cells. Esculetin at concentrations below 250 µM did not cause cytotoxicity to ARPE-19 cells. Cell viability analysis confirmed that t-BHP induced oxidative injury of ARPE-19 cells. However, ARPE-19 cells were protected from t-BHP-induced oxidative injury by esculetin in a concentration-dependent manner. As a result of the TUNEL assay to confirm apoptosis, esculetin treatment reduced the number of TUNEL-positive cells. Esculetin down-regulated the expression levels of Bax, Caspase-3, and PARP and up-regulated the expression level of Bcl2. Collectively, this study demonstrates that esculetin exerts potent antioxidant properties in ARPE-19 cells, inhibiting t-BHP-induced apoptosis under the regulation of apoptotic factors.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , terc-Butil Hidroperóxido/metabolismo , Apoptose , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Sobrevivência Celular
10.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078130

RESUMO

Primary cilia help to maintain cellular homeostasis by sensing conditions in the extracellular environment, including growth factors, nutrients, and hormones that are involved in various signaling pathways. Recently, we have shown that enhanced primary ciliogenesis in dopamine neurons promotes neuronal survival in a Parkinson's disease model. Moreover, we performed fecal metabolite screening in order to identify several candidates for improving primary ciliogenesis, including L-carnitine and acetyl-L-carnitine. However, the role of carnitine in primary ciliogenesis has remained unclear. In addition, the relationship between primary cilia and neurodegenerative diseases has remained unclear. In this study, we have evaluated the effects of carnitine on primary ciliogenesis in 1-methyl-4-phenylpyridinium ion (MPP+)-treated cells. We found that both L-carnitine and acetyl-L-carnitine promoted primary ciliogenesis in SH-SY5Y cells. In addition, the enhancement of ciliogenesis by carnitine suppressed MPP+-induced mitochondrial reactive oxygen species overproduction and mitochondrial fragmentation in SH-SY5Y cells. Moreover, carnitine inhibited the production of pro-inflammatory cytokines in MPP+-treated SH-SY5Y cells. Taken together, our findings suggest that enhanced ciliogenesis regulates MPP+-induced neurotoxicity and inflammation.


Assuntos
Neuroblastoma , Síndromes Neurotóxicas , 1-Metil-4-fenilpiridínio/toxicidade , Acetilcarnitina/farmacologia , Apoptose , Carnitina/farmacologia , Linhagem Celular Tumoral , Neurônios Dopaminérgicos , Humanos , Inflamação
11.
J Thorac Dis ; 14(4): 892-904, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35572900

RESUMO

Background: We included tumor necrosis (TN) and tumor viability (TV) in our prognostic assessment of patients with non-small cell lung cancer (NSCLC) and investigated their clinical significance. Methods: Medical records of all consecutive subjects who underwent a lobectomy with standard mediastinal lymph node dissection for NSCLC between 2015 to 2016, were reviewed retrospectively. We analyzed the associations of TN and TV with various parameters associated with prognosis as well as survival in NSCLC patients. All analyses were performed regarding neoadjuvant therapy status [the group without neoadjuvant therapy (WON) vs. the group with neoadjuvant therapy (WN)]. Results: A consecutive 154 patients (mean age: 65.0±10.1 years) were included into the present study. Fifteen patients underwent neoadjuvant therapy. Final pathologic stages were IA1 (n=13), IA2 (n=30), IA3 (n=32), IB (n=40), IIA (n=9), IIB (n=18), and IIIA (n=12). WN significantly showed higher TN (P=0.005) and lower TV (P<0.001) than WON. Tumors with vascular, lymphatic, and perineural invasion showed significantly lower TV and higher TN than cases without these features (P=0.014, P=0.019, and P=0.012 for TV; P=0.001, P<0.001, and P<0.001 for TN, respectively). Tumors with poorer differentiation had lower TV (P<0.001) and higher TN (P<0.001) than more differentiated tumors. There was a positive correlation between TN and tumor size (P<0.001) and a negative correlation between TV and tumor size (P=0.031). TN significantly increased as pathologic stage increased (P=0.001), and TV significantly decreased as pathologic stage increased (P=0.038). The group without TN survived significantly longer than the group with TN (P=0.016) in N0 disease and presence of TN and pT stage were independent prognostic factors for survival in N0 disease (P=0.037 and P=0.021, respectively). There was a positive correlation between TN and Ki-67 level (P=0.027). In WN, TN was significantly associated with differentiation (P=0.035), tumor size (P=0.008), and pT stage (P=0.031) but not overall pathologic stage or survival. Conclusions: Presence of histological TN was associated with prognosis of NSCLC, especially in N0 disease, and its usage as a diagnostic or prognostic tool and determination of resection extent could potentially provide prognostic information that can facilitate better management of NSCLC.

12.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611940

RESUMO

Selective autophagy controls cellular homeostasis by degrading unnecessary or damaged cellular components. Melanosomes are specialized organelles that regulate the biogenesis, storage, and transport of melanin in melanocytes. However, the mechanisms underlying melanosomal autophagy, known as the melanophagy pathway, are poorly understood. To better understand the mechanism of melanophagy, we screened an endocrine-hormone chemical library and identified nalfurafine hydrochlorides, a κ-opioid receptor agonist, as a potent inducer of melanophagy. Treatment with nalfurafine hydrochloride increased autophagy and reduced melanin content in alpha-melanocyte-stimulating hormone (α-MSH)-treated cells. Furthermore, inhibition of autophagy blocked melanosomal degradation and reversed the nalfurafine hydrochloride-induced decrease in melanin content in α-MSH-treated cells. Consistently, treatment with other κ-opioid receptor agonists, such as MCOPPB or mianserin, inhibited excessive melanin production but induced autophagy in B16F1 cells. Furthermore, nalfurafine hydrochloride inhibited protein kinase A (PKA) activation, which was notably restored by forskolin, a PKA activator. Additionally, forskolin treatment further suppressed melanosomal degradation as well as the anti-pigmentation activity of nalfurafine hydrochloride in α-MSH-treated cells. Collectively, our data suggest that stimulation of κ-opioid receptors induces melanophagy by inhibiting PKA activation in α-MSH-treated B16F1 cells.


Assuntos
Melaninas , alfa-MSH , alfa-MSH/farmacologia , Colforsina , Melaninas/metabolismo , Receptores Opioides kappa/agonistas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Camundongos
13.
Crit Care ; 25(1): 398, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789304

RESUMO

BACKGROUND: We assessed the prognostic accuracy of the standardized electroencephalography (EEG) patterns ("highly malignant," "malignant," and "benign") according to the EEG timing (early vs. late) and investigated the EEG features to enhance the predictive power for poor neurologic outcome at 1 month after cardiac arrest. METHODS: This prospective, multicenter, observational, cohort study using data from Korean Hypothermia Network prospective registry included adult patients with out-of-hospital cardiac arrest (OHCA) treated with targeted temperature management (TTM) and underwent standard EEG within 7 days after cardiac arrest from 14 university-affiliated teaching hospitals in South Korea between October 2015 and December 2018. Early EEG was defined as EEG performed within 72 h after cardiac arrest. The primary outcome was poor neurological outcome (Cerebral Performance Category score 3-5) at 1 month. RESULTS: Among 489 comatose OHCA survivors with a median EEG time of 46.6 h, the "highly malignant" pattern (40.7%) was most prevalent, followed by the "benign" (33.9%) and "malignant" (25.4%) patterns. All patients with the highly malignant EEG pattern had poor neurologic outcomes, with 100% specificity in both groups but 59.3% and 56.1% sensitivity in the early and late EEG groups, respectively. However, for patients with "malignant" patterns, 84.8% sensitivity, 77.0% specificity, and 89.5% positive predictive value for poor neurologic outcome were observed. Only 3.5% (9/256) of patients with background EEG frequency of predominant delta waves or undetermined had good neurologic survival. The combination of "highly malignant" or "malignant" EEG pattern with background frequency of delta waves or undetermined increased specificity and positive predictive value, respectively, to up to 98.0% and 98.7%. CONCLUSIONS: The "highly malignant" patterns predicted poor neurologic outcome with a high specificity regardless of EEG measurement time. The assessment of predominant background frequency in addition to EEG patterns can increase the prognostic value of OHCA survivors. Trial registration KORHN-PRO, NCT02827422 . Registered 11 September 2016-Retrospectively registered.


Assuntos
Coma , Eletroencefalografia , Parada Cardíaca , Sobreviventes , Coma/etiologia , Coma/fisiopatologia , Parada Cardíaca/complicações , Parada Cardíaca/fisiopatologia , Parada Cardíaca/terapia , Humanos , Prognóstico , Estudos Prospectivos
14.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681602

RESUMO

Particulate matters (PMs) increase oxidative stress and inflammatory response in different tissues. PMs disrupt the formation of primary cilia in various skin cells, including keratinocytes and melanocytes. In this study, we found that 2-isopropylmalic acid (2-IPMA) promoted primary ciliogenesis and restored the PM2.5-induced dysgenesis of primary cilia in dermal fibroblasts. Moreover, 2-IPMA inhibited the generation of excessive reactive oxygen species and the activation of stress kinase in PM2.5-treated dermal fibroblasts. Further, 2-IPMA inhibited the production of pro-inflammatory cytokines, including IL-6 and TNF-α, which were upregulated by PM2.5. However, the inhibition of primary ciliogenesis by IFT88 depletion reversed the downregulated cytokines by 2-IPMA. Moreover, we found that PM2.5 treatment increased the MMP-1 expression in dermal fibroblasts and a human 3-D-skin model. The reduced MMP-1 expression by 2-IPMA was further reversed by IFT88 depletion in PM2.5-treated dermal fibroblasts. These findings suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in dermal fibroblasts.


Assuntos
Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Malatos/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Cílios/metabolismo , Cílios/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteinase 1 da Matriz/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Cells ; 10(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359864

RESUMO

Emerging evidence indicates that cellular senescence could be a critical inducing factor for aging-associated neurodegenerative disorders. However, the involvement of cellular senescence remains unclear in Parkinson's disease (PD). To determine this, we assessed the effects of α-synuclein preformed fibrils (α-syn PFF) or 1-methyl-4-phenylpyridinium (MPP+) on changes in cellular senescence markers, employing α-syn PFF treated-dopaminergic N27 cells, primary cortical neurons, astrocytes and microglia and α-syn PFF-injected mouse brain tissues, as well as human PD patient brains. Our results demonstrate that α-syn PFF-induced toxicity reduces the levels of Lamin B1 and HMGB1, both established markers of cellular senescence, in correlation with an increase in the levels of p21, a cell cycle-arrester and senescence marker, in both reactive astrocytes and microglia in mouse brains. Using Western blot and immunohistochemistry, we found these cellular senescence markers in reactive astrocytes as indicated by enlarged cell bodies within GFAP-positive cells and Iba1-positive activated microglia in α-syn PFF injected mouse brains. These results indicate that PFF-induced pathology could lead to astrocyte and/or microglia senescence in PD brains, which may contribute to neuropathology in this model. Targeting senescent cells using senolytics could therefore constitute a viable therapeutic option for the treatment of PD.


Assuntos
Senescência Celular , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridínio , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteína HMGB1/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Lamina Tipo B/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Mudanças Depois da Morte , Ratos
16.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360546

RESUMO

Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). Here we report a novel role of PML proteins, regulating the ICL repair pathway. We found that depletion of the PML protein led to the significant reduction of damage-induced FANCD2 mono-ubiquitination and FANCD2 foci formation. Consistently, the cells treated with siRNA against PML showed enhanced sensitivity to a crosslinking agent, mitomycin C. Further studies showed that depletion of PML reduced the protein expression of FANCA, FANCG, and FANCD2 via reduced transcriptional activity. Interestingly, we observed that damage-induced CHK1 phosphorylation was severely impaired in cells with depleted PML, and we demonstrated that CHK1 regulates FANCA, FANCG, and FANCD2 transcription. Finally, we showed that inhibition of CHK1 phosphorylation further sensitized cancer cells to mitomycin C. Taken together, these findings suggest that the PML is critical for damage-induced CHK1 phosphorylation, which is important for FA gene expression and for repairing ICLs.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Regulação da Expressão Gênica , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Células HeLa , Humanos , Fosforilação , Ubiquitinação
17.
Arch Pharm Res ; 44(6): 621-631, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100261

RESUMO

The maintenance of lysosomal integrity is essential for lysosome function and cell fate. Damaged lysosomes are degraded by lysosomal autophagy, lysophagy. The mechanism underlying lysophagy remains largely unknown; this study aimed to contribute to the understanding of this topic. A cell-based screening system was used to identify novel lysophagy modulators. Triamterene (6-phenylpteridine-2,4,7-triamine) was identified as one of the most potent lysophagy inducers from the screening process. We found that triamterene causes lysosomal rupture without affecting other cellular organelles and increases autophagy flux in HepG2 cells. Damaged lysosomes in triamterene-treated cells were removed by autophagy-mediated pathway, which was inhibited by depletion of the autophagy regulator, ATG5 or SQSTM1. In addition, treatment of triamterene decreased the integrity of lysosome and cell viability, which were rescued by removing the triamterene treatment in HepG2 cells. Hence, our data suggest that triamterene is a novel lysophagy inducer through the disruption of lysosomal integrity.


Assuntos
Autofagia/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Lisossomos/efeitos dos fármacos , Triantereno/farmacologia , Autofagia/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células HeLa , Células Hep G2 , Humanos , Lisossomos/metabolismo
18.
Healthcare (Basel) ; 9(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946161

RESUMO

A pectoralis major muscle rupture is a rare injury that mainly occurs during exercise. This study examined the application of rehabilitation, strength and passive range of motion (ROM) change, and subjective assessment for 1 year undertaken after repair surgery of pectoralis major muscle rupture in a Jiu-Jitsu fighter. We hypothesized that the application of ROM exercises and rehabilitation strategies contributed to muscle recovery and successful return to sports. The patient was a 34-year-old man who was injured after falling during a competitive event. The patient had pain and swelling in the front of the chest and shoulder, and the distal chest was deformed. Imaging revealed a complete rupture of the pectoralis major muscle. Reparative surgery was performed by a specialist. Immobilization was performed one week after the surgery. Passive ROM exercises began with the forward flexion 2 weeks after the surgery; abduction and external rotation ROM exercises at 4 weeks; low-intensity muscle strength exercises using tube bands at 6 weeks; machine-based pectoralis major muscle exercises at 3 months. Isokinetic equipment was used to measure horizontal adduction and internal rotation strengths, and the subjective shoulder functional and ROM scores were evaluated. Recovery of shoulder function and ROM occurred at 3 months and muscle recovery at 6 months. The participant was able to return to sports at 5 months and compete at 7 months. Although this study explored only one patient's post-operative recovery, it suggests that ROM and strength exercises may be effective post-operative strategies for restoring function and strength to enable a return to sports.

19.
BMC Womens Health ; 21(1): 60, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563259

RESUMO

BACKGROUND: The present study examined the relationship between body mass index (BMI) and the risk for fragility fractures in postmenopausal Korean women. METHODS: Among subjects who participated in the 4th Korea National Health and Nutrition Examination Survey (2008-2009), 2114 women ≥ 40 years of age were included. BMI was based on standards set by the Korean Society for the Study of Obesity, as follows: < 18.5 kg/m2, underweight; 18.5 ≤ to < 25 kg/m2, normal weight; and ≥ 25 kg/m2, obese. Subjects were also divided into three groups according to the location of fragility fracture: spine, hip, or wrist. RESULTS: The mean (± SD) rate of fragility fracture was significantly different among the three groups: 5.9 ± 2.9% (underweight), 1.1 ± 0.3% (normal weight), and 3.0 ± 0.7% (obese) (p = 0.001). After correcting for age, family history, and treatment history of osteoporosis and rheumatoid arthritis, smoking and drinking status, and level of exercise, multivariable regression analysis revealed that the odds ratio for fragility fracture in the underweight group was 5.48 [95% confidence interval (CI) 1.80-16.73] and 3.33 (95% CI 1.61-6.87) in the obese group. After subdividing fragility fractures into vertebral and non-vertebral, the odds ratio for vertebral fracture in the underweight group was 5.49 (95% CI 1.31-23.09) times higher than that in the normal weight group; in the obese group, the non-vertebral fracture odds ratio was 3.87 (95% CI 1.45-10.33) times higher. Analysis of non-vertebral fractures in the obese group revealed an odds ratio for fracture 22.05 (95% CI 1.33-365.31) times higher for hip fracture and 3.85 (95% CI 1.35-10.93) times higher for wrist fracture. CONCLUSIONS: Obesity and underweight increased the risk for fragility fractures in postmenopausal Korean women.


Assuntos
Osteoporose Pós-Menopausa , Pós-Menopausa , Índice de Massa Corporal , Densidade Óssea , Estudos Transversais , Feminino , Humanos , Inquéritos Nutricionais , Osteoporose Pós-Menopausa/complicações , Osteoporose Pós-Menopausa/epidemiologia , República da Coreia/epidemiologia , Fatores de Risco
20.
Pharmaceutics ; 14(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056946

RESUMO

Polydatin (resveratrol-3-O-ß-mono-D-glucoside) is a polyphenol that can be easily accessed from peanuts, grapes, and red wine, and is known to have antiglycation, antioxidant, and anti-inflammatory effects. Diabetes mellitus is a very common disease, and diabetic complications are very common complications. The dry mouth symptom is one of the most common oral complaints in patients with diabetes mellitus. Diabetes mellitus is thought to promote hyposalivation. In this study, we aimed to investigate the improvement effect of polydatin on diabetes-induced hyposalivation in db/db mouse model of type 2 diabetes. We examined salivary flow rate, TUNEL assay, PAS staining, and immunohistochemical staining for AGEs, RAGE, HMGB1, 8-OHdG, and AQP5 to evaluate the efficacy of polydatin in the submandibular salivary gland. Diabetic db/db mice had a decreased salivary flow rate and salivary gland weight. The salivary gland of the vehicle-treated db/db mice showed an increased apoptotic cell injury. The AGEs were highly accumulated, and its receptor, RAGE expression was also enhanced. Expressions of HMGB1, an oxidative cell damage marker, and 8-OHdG, an oxidative DNA damage marker, increased greatly. However, polydatin ameliorated this hypofunction of the salivary gland and inhibited diabetes-related salivary cell injury. Furthermore, polydatin improved mucin accumulation, which is used as a damage marker for salivary gland acinar cells, and decreased expression of water channel AQP5 was improved by polydatin. In conclusion, polydatin has a potent protective effect on diabetes-related salivary gland hypofunction through its antioxidant and anti-glycation activities, and its AQP5 upregulation. This result suggests the possibility of the use of polydatin as a therapeutic drug to improve hyposalivation caused by diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA