Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 16(3): 279-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788485

RESUMO

After an injury, soft tissue structures in the body undergo a natural healing process through specific phases of healing. Adhesions occur as abnormal attachments between tissues and organs through the formation of blood vessels and/or fibrinous adhesions during the regenerative repair process. In this study, we developed an adhesion-preventing membrane with an improved physical protection function by modifying the surface of chondrocyte-derived extracellular matrices (CECM) with anti-adhesion function. We attempted to change the negative charge of the CECM surface to neutral using poly-L-lysine (PLL) and investigated whether it blocked fibroblast adhesion to it and showed an improved anti-adhesion effect in animal models of tissue adhesion. The surface of the membrane was modified with PLL coating (PLL 10), which neutralized the surface charge. We confirmed that the surface characteristics except for the potential difference were maintained after the modification and tested cell attachment in vitro. Adhesion inhibition was identified in a peritoneal adhesion animal model at 1 week and in a subcutaneous adhesion model for 4 weeks. Neutralized CECM (N-CECM) suppressed fibroblast and endothelial cell adhesion in vitro and inhibited abdominal adhesions in vivo. The CECM appeared to actively inhibit the infiltration of endothelial cells into the injured site, thereby suppressing adhesion formation, which differed from conventional adhesion barriers in the mode of action. Furthermore, the N-CECM remained intact without degradation for more than 4 weeks in vivo and exerted anti-adhesion effects for a long time. This study demonstrated that PLL10 surface modification rendered a neutral charge to the polymer on the extracellular matrix surface, thereby inhibiting cell and tissue adhesion. Furthermore, this study suggests a means to modify extracellular matrix surfaces to meet the specific requirements of the target tissue in preventing post-surgical adhesions.


Assuntos
Condrócitos , Polilisina , Adesivos/análise , Adesivos/metabolismo , Animais , Células Endoteliais , Matriz Extracelular/metabolismo , Polilisina/análise , Polilisina/metabolismo , Polilisina/farmacologia , Aderências Teciduais/metabolismo , Aderências Teciduais/prevenção & controle
2.
BMC Musculoskelet Disord ; 21(1): 557, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811456

RESUMO

BACKGROUND: Microfracture is a surgical technique that involves creating multiple holes of 3-4 mm depth in the subchondral bone to recruit stem cells in the bone marrow to the lesion, inducing fibrocartilage repair and knee cartilage regeneration. Recently, it has been reported that increasing the exposed area of the lower cartilaginous bone (drilling a lot of holes) increases the outflow of stem cells, which is expected to affect the physical properties of the subchondral bone when the exposed area is large. The purpose of this study was to analyse the effect of the distance between the holes in the microfracture procedure on the structural stability of the osteochondral bone using a finite element method. METHODS: In this study, lateral aspects of the femoral knee, which were removed during total knee arthroplasty were photographed using microtomography. The model was implemented using a solitary walks program, which is a three-dimensional simplified geometric representation based on the basic microtomography data. A microfracture model was created by drilling 4 mm-deep holes at 1, 1.5, 2, 2.5, 3, 4, and 5 mm intervals in a simplified three-dimensional (3D) geometric femoral model. The structural stability of these models was analysed with the ABAQUS program. We compared the finite element model (FEM) based on the microtomography image and the simplified geometric finite element model. RESULTS: Von Mises stress of the subchondral bone plate barely increased, even when the distance between holes was set to 1 mm. Altering the distance between the holes had little impact on the structural stability of the subchondral bone plate. Safety factors were all below 1. CONCLUSIONS: Although we did not confirm an optimal distance between holes, this study does provide reference data and an epidemiological basis for determining the optimal distance between the holes used in the microfracture procedure.


Assuntos
Artroplastia Subcondral , Cartilagem Articular , Fraturas de Estresse , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Análise de Elementos Finitos , Humanos , Microtomografia por Raio-X
3.
Acta Biomater ; 74: 192-206, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793074

RESUMO

In this work, we chose cartilage acellular matrix (CAM) as a promising antiadhesive material because CAM effectively inhibits the formation of blood vessels, and we used electrospinning to prepare antiadhesive barriers. Additionally, we synthesized N-hydroxysuccinimide (NHS)-poly(caprolactone-co-lactide-co-glycolide)-NHS (MP) copolymers (to tune degradation) as a cross-linking agent for CAM. This is the first report on the development of electrospun cross-linked (Cx) CAM/MP (CA/P) nanofiber (NF) (Cx-CA/P-NF) with a tunable degradation period as an antiadhesive barrier. Compared with the CA/P-NF before cross-linking, the electrospun Cx-CA/P-NF after cross-linking showed different biodegradation. Cx-CA/P-NF significantly inhibited the in vitro attachment and proliferation of human umbilical vein endothelial cells (HUVECs), as confirmed by an MTT assay and scanning electron microscopy images. Cx-CA/P-NFs implanted between a surgically damaged peritoneal wall and cecum gradually degraded in 7 days; this process was monitored by NIR imaging. The in vivo evaluation of the anti-tissue adhesive effect of Cx-CA/P-NFs revealed little adhesion, few blood vessels, and negligible inflammation at 7 days determined by hematoxylin and eosin staining. ED1 staining of Cx-CA/P-NFs showed infiltration of few macrophages because of the inflammatory response to the Cx-CA/P-NF as compared with an untreated injury model. Additionally, Cx-CA/P-NFs significantly suppressed the formation of blood vessels between the peritoneal wall and cecum, according to CD31 staining. Overall, Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Thus, it is reasonable to conclude that the Cx-CA/P-NF designed herein successfully works as an antiadhesive barrier with a tunable degradation period. STATEMENT OF SIGNIFICANCE: The cartilage acellular matrix (CAM) can inhibit the formation of fibrous tissue bridges and blood vessels between the tissue at an injured site and the surrounding healthy tissues. However, CAM has not been rigorously investigated as an antiadhesive barrier. In this manuscript, the cross-linked CAM nanofiber (Cx-CA/P-NF) designed herein successfully works as an antiadhesive barrier. Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Moreover, we demonstrated the suitable properties of Cx-CA/P-NF such as easy cross-linking by maintaining the antiadhesive properties, controllable biodegradation, and in vivo antiadhesive effect of Cx-CA/P-NF.


Assuntos
Matriz Extracelular/química , Nanofibras , Poliésteres , Aderências Teciduais/prevenção & controle , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanofibras/química , Nanofibras/uso terapêutico , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia
4.
Int J Rheum Dis ; 20(10): 1393-1402, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27454909

RESUMO

AIM: The aim of this study was to analyze subchondral bone scan uptake in osteoarthritic knees with reference to subchondral bone microstructure and articular cartilage histology. METHODS: This cross-sectional, laboratory study evaluated 123 human distal femoral condyle specimens of 67 patients after joint replacement surgery. All patients were preoperatively examined with bone scan of the knee joint. Specimens were evaluated for cartilage histology and micro-computed tomography analysis of subchondral bone. Data between bone scan, histology and micro-computed tomography were statistically analyzed using either coefficient of correlation, Student's t-test or one-way analysis of variance with Tukey post hoc test. RESULTS: Bone scan grading and histological articular cartilage degeneration scores showed significant correlation (r = 0.812, P < 0.001). Both bone scan positive and histologically confirmed osteoarthritis samples showed increase in subchondral trabecular bone volume and thickness, reflected in micro-computed tomography. Overall, positive predictive value (%) of bone scan for osteoarthritic cartilage lesions was 91.9%, and the sensitivity and specificity were 88.3% and 60%, respectively. Histology showed that bone scan has both a high positive predictive and a low negative predictive value for detection of osteoarthritic cartilage lesions. CONCLUSION: Bone scan uptake correlated with articular cartilage degeneration in osteoarthritic knees. Bone scan may be a useful diagnostic tool that reflects pathologic changes of cartilage in osteoarthritis.


Assuntos
Cartilagem Articular/patologia , Fêmur/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Cintilografia , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho , Biópsia , Cartilagem Articular/cirurgia , Estudos Transversais , Feminino , Fêmur/cirurgia , Humanos , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/cirurgia , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/administração & dosagem , Medronato de Tecnécio Tc 99m/administração & dosagem , Microtomografia por Raio-X
5.
PLoS One ; 11(6): e0156292, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258120

RESUMO

Recombinant human transforming growth factor beta-3 (rhTGF-ß3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-ß3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-ß3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-ß3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-ß3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-ß3-loaded EMLDS ((+) rhTGF-ß3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.


Assuntos
Cartilagem Articular/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Recombinantes/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Bioensaio , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/fisiologia , Dicroísmo Circular , Coelhos , Proteínas Recombinantes/genética , Suínos , Fator de Crescimento Transformador beta3/genética
6.
Dev Growth Differ ; 58(2): 167-79, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26889876

RESUMO

Fetal cartilage-derived progenitor cells (FCPCs) could be a useful cell source in cell-based therapies for cartilage disorders. However, their characteristics can vary depending on the developmental stages. The aim of this study was to compare the characteristics of rat FCPCs from the hind limb on embryonic day 14 (E14), E16 and E20 regarding proliferation, pluripotency, and differentiation. Morphologically, rat fetal cartilage tissue showed an increase in cartilaginous differentiation features (Safranin-O, type II collagen) and decrease in pluripotency marker (Sox2) in the order of E14, E16 and E20. E14 FCPCs showed significantly higher doubling time compared to E16 and E20 FCPCs. While the E14 FCPCs expressed pluripotent genes (Sox2, Oct4, Nanog), the E16 and E20 FCPCs expressed chondrogenic markers (Sox9, Col2a1, Acan). E20 FCPCs showed the highest ability to both chondrogenic and adipogenic differentiation and E14 FCPCs showed relatively better activity in osteogenic differentiation. Further analysis showed that E20 FCPCs expressed both adipogenic (C/ebpß) and osteogenic (Runx2, Sp7, Taz) transcription factors as well as chondrogenic transcription factors. Our results show an inverse relationship overall between the expression of pluripotency genes and that of chondrogenic and lineage-specific genes in FCPCs under development. Due to its exceptional proliferation and chondrogenic differentiation ability, fetal cells from epiphyseal cartilage (E20 in rats) may be a suitable cell source for cartilage regeneration.


Assuntos
Antígenos de Diferenciação/biossíntese , Cartilagem/metabolismo , Condrogênese , Feto/metabolismo , Membro Posterior/metabolismo , Células-Tronco/metabolismo , Animais , Cartilagem/citologia , Cartilagem/embriologia , Feminino , Feto/citologia , Feto/embriologia , Membro Posterior/citologia , Membro Posterior/embriologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia
7.
Am J Sports Med ; 43(12): 3034-44, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26430056

RESUMO

BACKGROUND: Fibrocartilage metaplasia in tendons and ligaments is an adaptation to compression as well as a pathological feature during degeneration. Medial meniscus posterior roots are unique ligaments that resist multidirectional forces, including compression. PURPOSE: To characterize the degeneration of medial meniscus posterior root tears in osteoarthritic knees, with an emphasis on fibrocartilage and calcification. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Samples of medial meniscus posterior roots were harvested from cadaveric specimens and patients during knee replacement surgery and grouped as follows: normal reference, no tear, partial tear, and complete tear. Degeneration was analyzed with histology, immunohistochemistry, and real-time polymerase chain reaction. Uniaxial tensile tests were performed on specimens with and without fibrocartilage. Quantifiable data were statistically analyzed by the Kruskal-Wallis test with the Dunn comparison test. RESULTS: Thirty, 28, and 42 samples harvested from 99 patients were allocated into the no tear, partial tear, and complete tear groups, respectively. Mean modified Bonar tendinopathy scores for each group were 3.97, 9.31, and 14.15, respectively, showing a higher degree of degeneration associated with the extent of the tear (P < .05 for all groups). The characterization of root matrices revealed an increase in fibrocartilage according to the extent of the tear. Tear margins revealed fibrocartilage in 59.3% of partial tear samples and 76.2% of complete tear samples, with a distinctive cleavage-like shape. Root tears with a similar shape were induced within fibrocartilaginous areas during uniaxial tensile testing. Even in the no tear group, 56.7% of samples showed fibrocartilage in the anterior margin of the root, adjacent to the meniscus. An increased stained area of calcification and expression of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene were observed in the complete tear group compared with the no tear group (P < .0001 and P = .24, respectively). CONCLUSION: Fibrocartilage and calcification increased in medial meniscus posterior roots, associated with the degree of the tear. Both findings, which impair the ligament's resistance to tension, may play a pivotal role during the pathogenesis of degenerative meniscus root tears in osteoarthritic knees. Fibrocartilage and calcification may be useful as diagnostic markers as well as markers of degeneration, which may aid in determining the treatment modality in meniscus root tears. The presence of fibrocartilage in intact roots may suggest an impending tear in osteoarthritic knees.


Assuntos
Meniscos Tibiais/patologia , Meniscos Tibiais/fisiopatologia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Cadáver , Calcinose/patologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Lesões do Menisco Tibial
8.
J Orthop Res ; 32(6): 802-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24676881

RESUMO

Microfracture is considered as the first-line procedure for knee cartilage repair, but the results of microfracture seem less predictable and rather controversial in a salvage situation. Thus, the purpose of the study was to histomorphochemically compare microfracture as a salvage procedure with microfracture as a first-line procedure in a rabbit model. We hypothesized that microfracture in a salvage situation would result in histomorphochemically inferior cartilage repair compared to microfracture as a first-line procedure, and the inferiority would be attributed to less migration of reparable marrow cells to the defect due to destruction of microarchitecture of the subchondral bone. Thirty-six New Zealand white rabbits were divided into three groups: (i) untreated full-thickness chondral defect, (ii) single microfracture treatment (first microfracture group), and (iii) repeated microfracture in 8 weeks after the first procedure (second microfracture group). In each group, rabbits were sacrificed at the end of 8 weeks, and osteochondral specimens at the repair sites were obtained for histomorphochemical analysis. Results showed that microfracture as a salvage procedure resulted in overall inferior cartilage repair histomorphochemically compared with microfracture as a first-line procedure, which correlated with deteriorative changes in the quality of underlying subchondral bone rather than intrinsic incapability to recruit the reparative cells in the defect area. In conclusion, although a comparable number of reparable cells and a mechanically weakened subchondral bone are anticipated, more study is necessary to clearly determine when a microfracture should be performed in a situation.


Assuntos
Artroplastia Subcondral/efeitos adversos , Cartilagem/lesões , Traumatismos do Joelho/cirurgia , Terapia de Salvação/métodos , Animais , Densidade Óssea , Cartilagem/patologia , Cartilagem/cirurgia , Ensaio de Unidades Formadoras de Colônias , Coelhos , Reoperação/efeitos adversos , Cicatrização
9.
J Orthop Res ; 31(11): 1814-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23873586

RESUMO

The therapeutic effect of bone marrow stimulation techniques (BSTs) is mainly attributed to the role of mesenchymal stem cells (MSCs) from the bone marrow. However, no studies have directly shown the amount of MSCs drained by BSTs. This study hypothesized that differences in the opening of subchondral bone affect the number of MSCs drained from the bone marrow. We purposed that as the exposed area and hole size of BSTs vary, the number of MSCs drained out was measured. Three groups of different BSTs were designed that have variations in the sizes of total exposed area and individual holes. Three different BSTs using a curette, 1.5- and 0.8-mm awls were carried out on the full-thickness femoral cartilage defect of young rabbits. After BST, the number of MSCs in the blood clot was measured by CFU-Fs assay. As the size of the total exposed area increased, so did the number of MSCs obtained. The number of MSCs drained from bone marrow may vary depending on different BSTs and this could affect therapeutic efficacy of cartilage defect. As current microfracture (MF) method cannot drain the most MSCs clinically, more improved surgery technique is needed.


Assuntos
Medula Óssea/fisiologia , Cartilagem Articular/cirurgia , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais/fisiologia , Animais , Artroplastia Subcondral , Masculino , Coelhos
10.
J Biomater Sci Polym Ed ; 20(5-6): 757-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19323888

RESUMO

One of the current limitations in using electrospun nanofibrous materials for tissue engineering is that cells have difficulty penetrating into the materials. For this, multi-layered electrospun structures composed of polyurethane (PU) and poly(ethylene oxide) (PEO) were fabricated and tested in vitro. A 20% (w/v) PU solution was electrospun for 30 min, while a 20% (w/v) PEO solution was electrospun for 5, 15 or 30 min, alternatively. Then, the PEO was extracted by immersing the structure in distilled water to make multi-layered structure. The characteristics of fabricated structures were examined by SEM, FT-IR spectroscopy, mechanical tests and cell penetration test. The bioactivities of smooth muscle cells (SMCs) on these scaffolds were assessed by quantifying DNA, collagen and glycosaminoglycan (GAG) levels. Although hybrid PEO-extracted scaffolds had a little of residual PEO, they were more penetrable than PU alone scaffolds. Also, they showed higher bioactivity than PU-alone scaffolds. The results of this study provided potential of this structure in the application not only to the development of artificial blood vessels but also to other types for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Prótese Vascular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polietilenoglicóis/química , Poliuretanos/química , Alicerces Teciduais , Materiais Biocompatíveis/síntese química , Fenômenos Biomecânicos , Proliferação de Células , Células Cultivadas , Colágeno/biossíntese , DNA/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Nanotecnologia , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
11.
J Biosci Bioeng ; 101(2): 120-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16569606

RESUMO

We introduced mechanical stimuli and micropatterned substrate with microfibers to investigate their effects on neurite outgrowth along with nerve growth factor in vitro. Two types of surface morphology were used: a surface that was coated by laminin alone and a surface where in microfibers was added on the laminin surface. PC-12 cells were seeded on both surface types and cultured for 2 d. The magnitudes of shear stresses ranged from 0.10 to 1.50 Pa. Two days after stimulation by shear stress, neurite outgrowth and its direction were measured by F-actin staining and digital image processing. When a shear stress of 0.50 Pa was applied, neurons were most highly aligned with microfibers. The average length of neurite outgrowth with microfibers was largest at a shear stress of 0.25 Pa. The results suggest that micropatterned fibers and fluid-induced shear stress are promising for stimulating neurite outgrowth in a desired direction.


Assuntos
Neuritos/fisiologia , Estresse Mecânico , Actinas/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Microscopia Eletrônica de Varredura , Células PC12 , Ratos
12.
Biomaterials ; 25(3): 527-35, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14585702

RESUMO

This in vitro study investigated the potential of the heat-treated porcine trabecular bone block as a bone substitute for the treatment of bone defects or related diseases. Chemical, mechanical, and morphological studies of bone blocks were performed. The resultant properties were compared with the properties of currently available commercial products from bovine trabecular bones. The major component of the bone block was hydroxyapatite, and the ratio of Ca/P was 1.65-1.66. The average values of the compressive Young's modulus and the ultimate strength were 346.33 +/- 83.15 and 6.66 +/- 1.62 MPa, respectively. The pore size of the heat-treated bone blocks was approximately 300-500 microm. For the biological investigations, expanded bone marrow stromal cells (BMSCs) were isolated from the femurs of New Zealand White rabbits and were dynamically seeded into the heat-treated porcine bone block (10x10x5 mm3). Before the cells were seeded, the heat-treated porcine bone blocks were divided into two groups: collagen coated blocks (n=16) and uncoated blocks (n=16). Within each group, the blocks were again divided into two groups, depending on the culture method, i.e., static or rotating culture. Cells were cultured in the blocks for up to 6 weeks. Scanning electron microscopic examination after 4 weeks showed that the cell layers attached to the porcine bone block. Proliferation and osteogenic differentiation were analyzed by cell counting, an MTT assay, alkaline phosphatase activity, and total protein content. The deposition of extracellular substances and osteoid formation surrounded by osteoblast-like cuboidal cells were confirmed through histochemical staining and transmission electron microscopy. Based on the results of this study, we conclude that heat-treated porcine trabecular bone has great potential as a bone substitute and may even be superior to currently available commercial products.


Assuntos
Células da Medula Óssea/citologia , Osteoblastos/citologia , Osteoblastos/patologia , Animais , Substitutos Ósseos/química , Osso e Ossos/patologia , Bovinos , Diferenciação Celular , Divisão Celular , Colágeno/química , Durapatita/química , Temperatura Alta , Humanos , Técnicas In Vitro , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Coelhos , Células Estromais/citologia , Suínos , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Transplante , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA