Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 1: 132, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21779244

RESUMO

Cannabinoids are known to be clinically beneficial for control of appetite disorders and nausea/vomiting, with emerging data that they can impact other GI disorders, such as inflammation. Post-inflammatory irritable bowel syndrome (PI-IBS) is a condition of perturbed intestinal function that occurs subsequent to earlier periods of intestinal inflammation. Cannabinoid 1 receptor (CB1R) and CB2R alterations in GI inflammation have been demonstrated in both animal models and clinically, but their continuing role in the post-inflammatory period has only been implicated to date. Therefore, to provide direct evidence for CBR involvement in altered GI functions in the absence of overt inflammation, we used a model of enhanced upper GI transit that persists for up to 4 weeks after a single insult by intracolonic 0.5% oil of mustard (OM) in mice. In mice administered OM, CB1R immunostaining in the myenteric plexus was reduced at day 7, when colonic inflammation is subsiding, and then increased at 28 days, compared to tissue from age-matched vehicle-treated mice. In the lamina propria CB2R immunostaining density was also increased at day 28. In mice tested 28 day after OM, either a CB1R-selective agonist, ACEA (1 and 3 mg/kg, s.c.) or a CB2R-selective agonist, JWH-133 (3 and 10 mg/kg, s.c.) reduced the enhanced small intestinal transit in a dose-related manner. Doses of ACEA and JWH-133 (1 mg/kg), alone or combined, reduced small intestinal transit of OM-treated mice to a greater extent than control mice. Thus, in this post-colonic inflammation model, both CBR subtypes are up-regulated and there is increased efficacy of both CB1R and CB2R agonists. We conclude that CBR remodeling occurs not only during GI inflammation but continues during the recovery phase. Thus, either CB1R- or CB2-selective agonists could be efficacious for modulating GI motility in individuals experiencing diarrhea-predominant PI-IBS.

2.
Am J Physiol Gastrointest Liver Physiol ; 291(2): G364-71, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16574988

RESUMO

Oil of mustard (OM) is a potent neuronal activator that is known to elicit visceral hyperalgesia when given intracolonically, but the full extent to which OM is also proinflammatory in the gastrointestinal tract is not known. We have previously shown that male CD-1 mice given a single administration of 0.5% OM develop a severe colitis that is maximum at day 3 and that gradually lessens until essentially absent by day 14. OM-induced neuronal stimulation is reported to be reduced by cannabinoid agonists, and cannabinoid receptor 1 (CB1R)-/- mice have exacerbated experimental colitis. Therefore, we examined the role of cannabinoids in this OM-induced 3-day model of colitis in CD-1 mice and in a 7-day dextran sulfate sodium (DSS) colitis model in BALB/c mice. In OM colitis, the CB1R-selective agonist ACEA and the CB2R-selective agonist JWH-133 reduced (P < 0.05) colon weight gain (means +/- SE; 82 +/- 13% and 47 +/- 15% inhibition, respectively), colon shrinkage (98 +/- 24% and 42 +/- 12%, respectively), colon inflammatory damage score (49 +/- 11% and 40 +/- 12%, respectively), and diarrhea (58 +/- 12% and 43 +/- 11%, respectively). Histological damage was similarly reduced by these treatments. Likewise, CBR agonists attenuated DSS colitis, albeit at higher doses; ACEA at 10 mg/kg, twice daily, inhibited (P < 0.05) macroscopic and microscopic scores (46 +/- 9% and 63 +/- 7%, respectively); whereas 20 mg/kg, twice daily, of JWH-133 was required to diminish (P < 0.05) macroscopic and microscopic scores (29 +/- 7% and 43 +/- 5%, respectively). CB1R and CB2R immunostaining of colon sections revealed that CB1R in enteric neurons was more intense in colitic vs. control mice; however, CB1R was also increased in the endothelial layer in OM colitis only. CB2R immunostaining was more marked in infiltrated immune cells in OM colitis. These findings validate the OM colitis model with respect to the DSS model and provide strong support to the emerging idea that cannabinoid receptor activation mediates protective mechanisms in experimental colitis. The demonstration of CB1R agonist effects in colitis support the neurogenic nature of the OM-induced colitis model and reinforce the importance of neuronal activation in intestinal inflammation.


Assuntos
Colite/metabolismo , Colite/prevenção & controle , Sulfato de Dextrana , Modelos Animais de Doenças , Mostardeira , Óleos de Plantas , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/administração & dosagem , Canabinoides/administração & dosagem , Colite/induzido quimicamente , Colite/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Resultado do Tratamento
3.
Am J Physiol Gastrointest Liver Physiol ; 288(6): G1266-73, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15691868

RESUMO

Oil of mustard (OM) is a potent neuronal activator that promotes allodynia and hyperalgesia within minutes of application. In this study, OM was used to induce an acute colitis. We also investigated whether intracolonic OM-induced inflammation alters gastrointestinal (GI) function over a longer time frame as a model of postinflammatory irritable bowel syndrome (PI-IBS). Mice given a single administration of 0.5% OM developed a severe colitis that peaked at day 3, was reduced at day 7, and was absent by day 14. At the peak response, there was body weight loss, colon shrinkage, thickening and weight increases, distension of the proximal colon, and diarrhea. Macroscopic inspection of the distal colon revealed a discontinuous pattern of inflammatory damage and occasional transmural ulceration. Histological examination showed loss of epithelium, an inflammatory infiltrate, destruction of mucosal architecture, edema, and loss of circular smooth muscle architecture. OM administration increased transit of a carmine dye bolus from 58% of the total length of the upper GI tract in untreated age-matched controls to as high as 74% when tested at day 28 post-OM. Mice in the latter group demonstrated a significantly more sensitive response to inhibition of upper GI transit by the mu-opioid receptor agonist loperamide compared with normal mice. OM induces a rapid, acute, and transient colitis and, in the longer term, functional changes in motility that are observed when there is no gross inflammation and thereby is a model of functional bowel disorders that mimic aspects of PI-IBS in humans.


Assuntos
Colite/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Síndrome do Intestino Irritável/fisiopatologia , Extratos Vegetais/efeitos adversos , Doença Aguda , Animais , Antidiarreicos/farmacologia , Colite/veterinária , Colo/imunologia , Colo/patologia , Diarreia/etiologia , Modelos Animais de Doenças , Inflamação , Intestino Grosso/fisiologia , Intestino Delgado/fisiologia , Síndrome do Intestino Irritável/veterinária , Loperamida/farmacologia , Masculino , Camundongos , Mostardeira , Extratos Vegetais/administração & dosagem , Óleos de Plantas , Úlcera/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA