Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 8: e2300349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237098

RESUMO

PURPOSE: Cancer patients with advanced-stage disease have poor prognosis, typically having limited options for efficacious treatment, and genomics-based therapy guidance continues to benefit only a fraction of patients. Next-generation ex vivo approaches, such as cell mass-based response testing (MRT), offer an alternative precision medicine approach for a broader population of patients with cancer, but validation of clinical feasibility and potential impact remain necessary. MATERIALS AND METHODS: We evaluated the clinical feasibility and accuracy of using live-cell MRT to predict patient drug sensitivity. Using a unified measurement workflow with a 48-hour result turnaround time, samples were subjected to MRT after treatment with a panel of drugs in vitro. After completion of therapeutic course, clinical response data were correlated with MRT-based predictions of outcome. Specimens were collected from 104 patients with solid (n = 69) and hematologic (n = 35) malignancies, using tissue formats including needle biopsies, malignant fluids, bone marrow aspirates, and blood samples. Of the 81 (78%) specimens qualified for MRT, 41 (51%) patients receiving physician-selected therapies had treatments matched to MRT. RESULTS: MRT demonstrated high concordance with clinical responses with an odds ratio (OR) of 14.80 (P = .0003 [95% CI, 2.83 to 102.9]). This performance held for both solid and hematologic malignances with ORs of 20.67 (P = .0128 [95% CI, 1.45 to 1,375.57]) and 8.20 (P = .045 [95% CI, 0.77 to 133.56]), respectively. Overall, these results had a predictive accuracy of 80% (P = .0026 [95% CI, 65 to 91]). CONCLUSION: MRT showed highly significant correlation with clinical response to therapy. Routine clinical use is technically feasible and broadly applicable to a wide range of samples and malignancy types, supporting the need for future validation studies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
3.
Commun Biol ; 5(1): 1295, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435843

RESUMO

Functional precision medicine offers a promising complement to genomics-based cancer therapy guidance by testing drug efficacy directly on a patient's tumor cells. Here, we describe a workflow that utilizes single-cell mass measurements with inline brightfield imaging and machine-learning based image classification to broaden the clinical utility of such functional testing for cancer. Using these image-curated mass measurements, we characterize mass response signals for 60 different drugs with various mechanisms of action across twelve different cell types, demonstrating an improved ability to detect response for several slow acting drugs as compared with standard cell viability assays. Furthermore, we use this workflow to assess drug responses for various primary tumor specimen formats including blood, bone marrow, fine needle aspirates (FNA), and malignant fluids, all with reports generated within two days and with results consistent with patient clinical responses. The combination of high-resolution measurement, broad drug and malignancy applicability, and rapid return of results offered by this workflow suggests that it is well-suited to performing clinically relevant functional assessment of cancer drug response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Contagem de Células , Fluxo de Trabalho , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Proc Natl Acad Sci U S A ; 117(27): 15659-15665, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581119

RESUMO

Cell size is believed to influence cell growth and metabolism. Consistently, several studies have revealed that large cells have lower mass accumulation rates per unit mass (i.e., growth efficiency) than intermediate-sized cells in the same population. Size-dependent growth is commonly attributed to transport limitations, such as increased diffusion timescales and decreased surface-to-volume ratio. However, separating cell size- and cell cycle-dependent growth is challenging. To address this, we monitored growth efficiency of pseudodiploid mouse lymphocytic leukemia cells during normal proliferation and polyploidization. This was enabled by the development of large-channel suspended microchannel resonators that allow us to monitor buoyant mass of single cells ranging from 40 pg (small pseudodiploid cell) to over 4,000 pg, with a resolution ranging from ∼1% to ∼0.05%. We find that cell growth efficiency increases, plateaus, and then decreases as cell cycle proceeds. This growth behavior repeats with every endomitotic cycle as cells grow into polyploidy. Overall, growth efficiency changes 33% throughout the cell cycle. In contrast, increasing cell mass by over 100-fold during polyploidization did not change growth efficiency, indicating exponential growth. Consistently, growth efficiency remained constant when cell cycle was arrested in G2 Thus, cell cycle is a primary determinant of growth efficiency. As growth remains exponential over large size scales, our work finds no evidence for transport limitations that would decrease growth efficiency.


Assuntos
Técnicas Biossensoriais , Crescimento Celular , Proliferação de Células/genética , Leucemia Linfoide/genética , Animais , Ciclo Celular/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Humanos , Leucemia Linfoide/patologia , Camundongos , Técnicas Analíticas Microfluídicas , Poliploidia
5.
Genome Biol ; 19(1): 207, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482222

RESUMO

Mass and growth rate are highly integrative measures of cell physiology not discernable via genomic measurements. Here, we introduce a microfluidic platform enabling direct measurement of single-cell mass and growth rate upstream of highly multiplexed single-cell profiling such as single-cell RNA sequencing. We resolve transcriptional signatures associated with single-cell mass and growth rate in L1210 and FL5.12 cell lines and activated CD8+ T cells. Further, we demonstrate a framework using these linked measurements to characterize biophysical heterogeneity in a patient-derived glioblastoma cell line with and without drug treatment. Our results highlight the value of coupled phenotypic metrics in guiding single-cell genomics.


Assuntos
Crescimento Celular , Genômica/métodos , Técnicas Analíticas Microfluídicas , Análise de Célula Única/métodos , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária , Camundongos
6.
Genome Res ; 28(12): 1901-1918, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30459213

RESUMO

Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.


Assuntos
Divisão Celular/genética , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Linhagem Celular , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/mortalidade , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Célula Única/métodos , Imagem com Lapso de Tempo
7.
Nat Commun ; 9(1): 4784, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429479

RESUMO

A fundamental trade-off between flow rate and measurement precision limits performance of many single-cell detection strategies, especially for applications that require biophysical measurements from living cells within complex and low-input samples. To address this, we introduce 'active loading', an automated, optically-triggered fluidic system that improves measurement throughput and robustness by controlling entry of individual cells into a measurement channel. We apply active loading to samples over a range of concentrations (1-1000 particles µL-1), demonstrate that measurement time can be decreased by up to 20-fold, and show theoretically that performance of some types of existing single-cell microfluidic devices can be improved by implementing active loading. Finally, we demonstrate how active loading improves clinical feasibility for acute, single-cell drug sensitivity measurements by deploying it to a preclinical setting where we assess patient samples from normal brain, primary and metastatic brain cancers containing a complex, difficult-to-measure mixture of confounding biological debris.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Animais , Linhagem Celular , Células Cultivadas , Desenho de Equipamento , Humanos , Camundongos , Reprodutibilidade dos Testes , Células Tumorais Cultivadas
8.
Cell Rep ; 25(7): 1898-1911.e5, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428356

RESUMO

Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute normalization unmasks global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulates transcriptional changes seen with triplication of a Down syndrome critical region on distal chromosome 21, and HMGN1 is necessary for B cell phenotypes in DS models. Absolute exogenous-normalized chromatin immunoprecipitation sequencing (ChIP-Rx) also reveals a global increase in histone H3K27 acetylation caused by HMGN1. Transcriptional amplification downstream of HMGN1 is enriched for stage-specific programs of B cells and B cell acute lymphoblastic leukemia, dependent on the developmental cellular context. These data offer a mechanistic explanation for DS transcriptional patterns and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted.


Assuntos
Síndrome de Down/genética , Proteína HMGN1/genética , Transcrição Gênica , Trissomia/genética , Acetilação , Animais , Linfócitos B/metabolismo , Linhagem Celular , Genoma , Proteína HMGN1/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Genéticos , Nucleossomos/metabolismo , Fenótipo , RNA/genética , Transcriptoma/genética , Regulação para Cima/genética
9.
Nat Commun ; 8(1): 1613, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29151572

RESUMO

Multiple myeloma (MM) has benefited from significant advancements in treatment that have improved outcomes and reduced morbidity. However, the disease remains incurable and is characterized by high rates of drug resistance and relapse. Consequently, methods to select the most efficacious therapy are of great interest. Here we utilize a functional assay to assess the ex vivo drug sensitivity of single multiple myeloma cells based on measuring their mass accumulation rate (MAR). We show that MAR accurately and rapidly defines therapeutic susceptibility across human multiple myeloma cell lines to a gamut of standard-of-care therapies. Finally, we demonstrate that our MAR assay, without the need for extended culture ex vivo, correctly defines the response of nine patients to standard-of-care drugs according to their clinical diagnoses. This data highlights the MAR assay in both research and clinical applications as a promising tool for predicting therapeutic response using clinical samples.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Análise de Célula Única/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Cinética
10.
Nat Biotechnol ; 34(11): 1161-1167, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723727

RESUMO

Assays that can determine the response of tumor cells to cancer therapeutics could greatly aid the selection of drug regimens for individual patients. However, the utility of current functional assays is limited, and predictive genetic biomarkers are available for only a small fraction of cancer therapies. We found that the single-cell mass accumulation rate (MAR), profiled over many hours with a suspended microchannel resonator, accurately defined the drug sensitivity or resistance of glioblastoma and B-cell acute lymphocytic leukemia cells. MAR revealed heterogeneity in drug sensitivity not only between different tumors, but also within individual tumors and tumor-derived cell lines. MAR measurement predicted drug response using samples as small as 25 µl of peripheral blood while maintaining cell viability and compatibility with downstream characterization. MAR measurement is a promising approach for directly assaying single-cell therapeutic responses and for identifying cellular subpopulations with phenotypic resistance in heterogeneous tumors.


Assuntos
Antineoplásicos/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Sistemas Microeletromecânicos/métodos , Neoplasias Experimentais/patologia , Resultado do Tratamento
11.
Nat Biotechnol ; 34(10): 1052-1059, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27598230

RESUMO

Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10-12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4-20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Ensaios de Triagem em Larga Escala/métodos , Sistemas Microeletromecânicos/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
12.
Nat Commun ; 7: 10220, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26732280

RESUMO

We introduce a microfluidic platform that enables off-chip single-cell RNA-seq after multi-generational lineage tracking under controlled culture conditions. We use this platform to generate whole-transcriptome profiles of primary, activated murine CD8+ T-cell and lymphocytic leukemia cell line lineages. Here we report that both cell types have greater intra- than inter-lineage transcriptional similarity. For CD8+ T-cells, genes with functional annotation relating to lymphocyte differentiation and function--including Granzyme B--are enriched among the genes that demonstrate greater intra-lineage expression level similarity. Analysis of gene expression covariance with matched measurements of time since division reveals cell type-specific transcriptional signatures that correspond with cell cycle progression. We believe that the ability to directly measure the effects of lineage and cell cycle-dependent transcriptional profiles of single cells will be broadly useful to fields where heterogeneous populations of cells display distinct clonal trajectories, including immunology, cancer, and developmental biology.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , RNA/genética , Animais , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA