RESUMO
Chronic kidney disease (CKD)-related cachexia increases the risks of reduced physical activity and mortality. However, the physiological phenotype of skeletal muscle fatigue and changes in intramuscular metabolites during muscle fatigue in CKD-related cachexia remain unclear. In the present study, we performed detailed muscle physiological evaluation, analysis of mitochondrial function, and comprehensive analysis of metabolic changes before and after muscle fatigue in a 5/6 nephrectomized rat model of CKD. Wistar rats were randomized to a sham-operation (Sham) group that served as a control group or a 5/6 nephrectomy (Nx) group. Eight weeks after the operation, in situ torque and force measurements in plantar flexor muscles in Nx rats using electrical stimulation revealed a significant decrease in muscle endurance during subacute phase related to mitochondrial function. Muscle mass was reduced without changes in the proportions of fiber type-specific myosin heavy chain isoforms in Nx rats. Pyruvate-malate-driven state 3 respiration in isolated mitochondria was impaired in Nx rats. Protein expression levels of mitochondrial respiratory chain complexes III and V were decreased in Nx rats. Metabolome analysis revealed that the increased supply of acetyl CoA in response to fatigue was blunted in Nx rats. These findings suggest that CKD deteriorates skeletal muscle endurance in association with mitochondrial dysfunction and inadequate supply of acetyl-CoA during muscle fatigue.NEW & NOTEWORTHY Mitochondrial dysfunction is associated with decreased skeletal muscle endurance in chronic kidney disease (CKD), but the muscle physiological phenotype and major changes in intramuscular metabolites during muscle fatigue in CKD-related cachexia remain unclear. By using a 5/6 nephrectomized CKD rat model, the present study revealed that CKD is associated with reduced tetanic force in response to repetitive stimuli in a subacute phase, impaired mitochondrial respiration, and inadequate supply of acetyl-CoA during muscle fatigue.
Assuntos
Fadiga Muscular , Insuficiência Renal Crônica , Animais , Ratos , Acetilcoenzima A/metabolismo , Caquexia , Músculo Esquelético/metabolismo , Ratos Wistar , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , RespiraçãoRESUMO
Preconditioning contractions (PCs) have been shown to markedly improve recovery from eccentric contractions (ECCs)-induced force depression. We here examined the mechanism behind the effects of PCs with focusing on the SH3 and cysteine-rich domain 3 (STAC3) that is essential for coupling membrane depolarization to Ca2+ release from the sarcoplasmic reticulum. Rat medial gastrocnemius (MG) muscles were excised immediately (REC0), 1 day (REC1), and 4 days (REC4) after exposure to 100 repeated damaging ECCs in vivo. PCs with 10 repeated nondamaging ECCs were applied 2 days before the damaging ECCs. Damaging ECCs induced in vivo isometric torque depression at 50 and 100 Hz stimulation frequencies, which was accompanied by a significant decrease in the amount of full-length STAC3, an activation of calpain 1, and an increased number of Evans Blue dye-positive fibers in MG muscles at REC1 and REC4. Interestingly, PCs attenuated all these deleterious alterations induced by damaging ECCs. Moreover, mechanistic experiments performed on normal muscle samples exposed to various concentration of Ca2+ showed a Ca2+-dependent proteolysis of STAC3, which was prevented by calpain inhibitor MDL-28170. In conclusion, PCs may improve recovery from force depression after damaging ECCs, in part by inhibiting the loss of STAC3 due to the increased permeability of cell membrane and subsequent activation of calpain 1.NEW & NOTEWORTHY The SH3 and cysteine-rich domain 3 (STAC3) is a skeletal muscle-specific protein that couples membrane depolarization to sarcoplasmic reticulum Ca2+ release. No studies, however, examined the role of STAC3 in protective effects of preconditioning contractions (PCs) against damaging eccentric contractions (ECCs). Here, we demonstrate that PCs may improve recovery from damaging ECCs-induced force depression, in part by an inhibition of Ca2+-dependent proteolysis of STAC3 due to increased membrane permeability and subsequent calpain 1 activation.