Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 61(7): 583-594, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35287432

RESUMO

The multifunctional cytochrome P450 17A1 (CYP17A1) plays a crucial role in human steroid hormone synthesis (UniProtKB─P05093). It first carries out standard monooxygenase chemistry, converting pregnenolone (PREG) and progesterone (PROG) into 17OH-PREG and 17OH-PROG, utilizing a "Compound I" to initiate hydrogen abstraction and radical recombination in the classic "oxygen rebound" mechanism. Additionally, these hydroxylated products also serve as substrates in a second oxidative cycle which cleaves the 17-20 carbon-carbon bond to form dehydroepiandrosterone and androstenedione, which are key precursors in the generation of powerful androgens and estrogens. Interestingly, in humans, with 17OH-PREG, this so-called lyase reaction is more efficient than with 17OH-PROG, based on Kcat/Km values. In the present work, the asparagine residue at 202 position was replaced by serine, an alteration which can affect substrate orientation and control substrate preference for the lyase reaction. First, we report studies of solvent isotope effects for the N202S CYP17A1 mutant in the presence of 17OH-PREG and 17OH-PROG, which suggest that the ferric peroxo species is the predominant catalytically active intermediate in the lyase step. This conclusion is further supported by employing a combination of cryoradiolysis and resonance Raman techniques to successfully trap and structurally characterize the key reaction intermediates, including the peroxo, the hydroperoxo, and the crucial peroxo-hemiketal intermediate. Collectively, these studies show that the mutation causes active site structural changes that alter the H-bonding interactions with the key Fe-O-O fragment and the degree of protonation of the reactive ferric peroxo intermediate, thereby impacting lyase efficiency.


Assuntos
Asparagina , Esteroide 17-alfa-Hidroxilase , Androstenodiona , Domínio Catalítico , Humanos , Pregnenolona/química , Progesterona/química , Esteroide 17-alfa-Hidroxilase/química
2.
Biochemistry ; 60(43): 3262-3271, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662099

RESUMO

Steroid metabolism in humans originates from cholesterol and involves several enzyme reactions including dehydrogenation, hydroxylation, and carbon-carbon bond cleavage that occur at regio- and stereo-specific points in the four-membered ring structure. Cytochrome P450s occur at critical junctions that control the production of the male sex hormones (androgens), the female hormones (estrogens) as well as the mineralocorticoids and glucocorticoids. An important branch point in human androgen production is catalyzed by cytochrome P450 CYP17A1 and involves an initial Compound I-mediated hydroxylation at the 17-position of either progesterone (PROG) or pregnenolone (PREG) to form 17-hydroxy derivatives, 17OH-PROG and 17OH-PREG, with approximately similar efficiencies. Subsequent processing of the 17-hydroxy substrates involves a C17-C20 bond scission (lyase) activity that is heavily favored for 17OH-PREG in humans. The mechanism for this lyase reaction has been debated for several decades, some workers favoring a Compound I-mediated process, with others arguing that a ferric peroxo- is the active oxidant. Mutations in CYP17A1 can have profound clinical manifestations. For example, the replacement of the glutamic acid side with a glycine chain at position 305 in the CYP17A1 structure causes a clinically relevant steroidopathy; E305G CYP17A1 displays a dramatic decrease in the production of dehydroepiandrosterone from pregnenolone but surprisingly increases the activity of the enzyme toward the formation of androstenedione from progesterone. To better understand the functional consequences of this mutation, we self-assembled wild-type and the E305G mutant of CYP17A1 into nanodiscs and examined the detailed catalytic mechanism. We measured substrate binding, spin state conversion, and solvent isotope effects in the hydroxylation and lyase pathways for these substrates. Given that, following electron transfer, the ferric peroxo- species is the common intermediate for both mechanisms, we used resonance Raman spectroscopy to monitor the positioning of important hydrogen-bonding interactions of the 17-OH group with the heme-bound peroxide. We discovered that the E305G mutation changes the orientation of the lyase substrate in the active site, which alters a critical hydrogen bonding of the 17-alcohol to the iron-bound peroxide. The observed switch in substrate specificity of the enzyme is consistent with this result if the hydrogen bonding to the proximal peroxo oxygen is necessary for a proposed nucleophilic peroxoanion-mediated mechanism for CYP17A1 in carbon-carbon bond scission.


Assuntos
Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/ultraestrutura , Esteroides/metabolismo , Androgênios/biossíntese , Androgênios/metabolismo , Androstenodiona/metabolismo , Domínio Catalítico , Desidroepiandrosterona/metabolismo , Humanos , Ligação de Hidrogênio , Hidroxilação , Mutação , Polimorfismo de Nucleotídeo Único/genética , Pregnenolona/metabolismo , Progesterona/metabolismo , Análise Espectral Raman/métodos , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroides/biossíntese , Especificidade por Substrato , Translocação Genética
3.
Chemistry ; 26(70): 16846-16852, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32681807

RESUMO

Human cytochrome P450 CYP17A1 first catalyzes hydroxylation at the C17 position of either pregnenolone (PREG) or progesterone (PROG), and a subsequent C17 -C20 bond scission to produce dehydroepiandrosterone (DHEA) or androstenedione (AD). In the T306A mutant, replacement of the Threonine 306 alcohol functionality, essential for efficient proton delivery in the hydroxylase reaction, has only a small effect on the lyase activity. In this work, resonance Raman spectroscopy is employed to provide crucial structural insight, confirming that this mutant, with its disordered proton shuttle, fails to generate essential hydroxylase pathway intermediates, accounting for the loss in hydroxylase efficiency. Significantly, a corresponding spectroscopic study with the susceptible lyase substrate, 17-OH PREG, not only reveals an initially trapped peroxo-iron intermediate experiencing an H-bond interaction of the 17-OH group with the proximal oxygen of the Fe-Op -Ot fragment, facilitating peroxo- attack on the C20 carbon, but also unequivocally shows the presence of the subsequent hemiketal intermediate of the lyase reaction.


Assuntos
Liases/genética , Liases/metabolismo , Prótons , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Humanos , Liases/química , Pregnenolona , Progesterona , Esteroide 17-alfa-Hidroxilase/química
4.
J Am Chem Soc ; 140(23): 7324-7331, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29758981

RESUMO

The multifunctional enzyme, cytochrome P450 (CYP17A1), plays a crucial role in the production of androgens, catalyzing two key reactions on pregnenolone (PREG) and progesterone (PROG), the first being a 17-hydroxylation to generate 17-OH PREG and 17-OH PROG, with roughly equal efficiencies. The second is a C-C bond scission or "lyase" reaction in which the C17-C20 bond is cleaved, leading to the eventual production of powerful androgens, whose involvement in the proliferation of prostate cancer has generated intense interest in developing inhibitors of CYP17A1. For humans, the significance of the C-C bond cleavage of 17-OH PROG is lessened, because it is about 50 times less efficient than for 17-OH PREG in terms of kcat/Km. Recognizing the need to clarify relevant reaction mechanisms involved with such transformations, we first report studies of solvent isotope effects, results of which are consistent with a Compound I mediated PROG hydroxylase activity, yet exclude this intermediate as a participant in the formation of androstenedione (AD) via the lyase reaction. This finding is also supported by a combination of cryoreduction and resonance Raman spectroscopy that traps and structurally characterizes the key hemiketal reaction intermediates. Adding to a previous study of PREG and 17-OH PREG metabolism, the current work provides definitive evidence for a more facile protonation of the initially formed ferric peroxo-intermediate for 17-OH PROG-bound CYP17A1, compared to the complex with 17-OH PREG. Importantly, Raman characterization also reveals an H-bonding interaction with the terminal oxygen of the peroxo fragment, rather than with the proximal oxygen, as is present for 17-OH PREG. These factors would favor a diminished lyase activity of the sample with 17-OH PROG relative to the complex with 17-OH PREG, thereby providing a convincing structural explanation for the dramatic differences in activity for these lyase substrates in humans.


Assuntos
17-alfa-Hidroxiprogesterona/química , Carbono-Carbono Liases/química , Enzimas Multifuncionais/química , Esteroide 17-alfa-Hidroxilase/química , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Hidroxilação , Cinética , Oxirredução , Análise Espectral Raman/métodos
5.
Biochemistry ; 55(36): 5073-83, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27546061

RESUMO

DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.


Assuntos
Heme/química , Ferro/química , Proteínas de Ligação a RNA/química , Clonagem Molecular , Humanos , Proteínas de Ligação a RNA/genética , Análise Espectral/métodos
6.
Biochem Biophys Res Commun ; 477(2): 202-8, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27297105

RESUMO

Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second CC lyase step, at the expense of glucocorticoid production. Cytochrome b5 (cyt b5) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b5 increases androgen biosynthesis. Cyt b5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b5, we generated a redox-inactive form of cyt b5, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b5), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b5. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b5. Upon addition of Mn-b5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b5-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal FeS vibrational frequency. Thus, although Mn-b5 binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis.


Assuntos
Androgênios/síntese química , Citocromos b5/química , Esteroide 17-alfa-Hidroxilase/química , Sítios de Ligação , Ativação Enzimática , Oxirredução , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 112(52): 15856-61, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668369

RESUMO

Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17-C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon-carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences.


Assuntos
17-alfa-Hidroxipregnenolona/metabolismo , Androgênios/metabolismo , Desidroepiandrosterona/metabolismo , Pregnenolona/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , 17-alfa-Hidroxipregnenolona/química , Androgênios/química , Biocatálise , Vias Biossintéticas , Desidroepiandrosterona/química , Humanos , Ligação de Hidrogênio , Hidroxilação , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Pregnenolona/química , Conformação Proteica , Espectrofotometria/métodos , Esteroide 17-alfa-Hidroxilase/química , Esteroide 17-alfa-Hidroxilase/genética , Especificidade por Substrato , Temperatura
8.
J Am Chem Soc ; 136(13): 4825-8, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24645879

RESUMO

CYP19A1, or aromatase, a cytochrome P450 responsible for estrogen biosynthesis in humans, is an important therapeutic target for the treatment of breast cancer. There is still controversy surrounding the identity of reaction intermediate that catalyzes carbon-carbon scission in this key enzyme. Probing the oxy-complexes of CYP19A1 poised for hydroxylase and lyase chemistries using resonance Raman spectroscopy and drawing a comparison with CYP17A1, we have found no significant difference in the frequencies or isotopic shifts for these two steps in CYP19A1. Our experiments implicate the involvement of Compound I in the terminal lyase step of CYP19A1 catalysis.


Assuntos
Androstenodiona/metabolismo , Aromatase/metabolismo , Liases/metabolismo , Análise Espectral Raman , Androstenodiona/química , Humanos , Oxirredução , Oxigênio/química , Oxigênio/metabolismo
9.
Biochemistry ; 53(1): 90-100, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24328388

RESUMO

An important function of steroidogenic cytochromes P450 is the transformation of cholesterol to produce androgens, estrogens, and the corticosteroids. The activities of cytochrome P450c17 (CYP17) are essential in sex hormone biosynthesis, with severe developmental defects being a consequence of deficiency or mutations. The first reaction catalyzed by this multifunctional P450 is the 17α-hydroxylation of pregnenolone (PREG) to 17α-hydroxypregnenolone (17-OH PREG) and progesterone (PROG) to 17α-hydroxyprogesterone (17-OH PROG). The hydroxylated products then either are used for production of corticoids or undergo a second CYP17 catalyzed transformation, representing the first committed step of androgen formation. While the hydroxylation reactions are catalyzed by the well-known Compound I intermediate, the lyase reaction is believed to involve nucleophilic attack of the earlier peroxo- intermediate on the C20-carbonyl. Herein, resonance Raman (rR) spectroscopy reveals that substrate structure does not impact heme structure for this set of physiologically important substrates. On the other hand, rR spectra obtained here for the ferrous CO adducts with these four substrates show that substrates do interact differently with the Fe-C-O fragment, with large differences between the spectra obtained for the samples containing 17-OH PROG and 17-OH PREG, the latter providing evidence for the presence of two Fe-C-O conformers. Collectively, these results demonstrate that individual substrates can differentially impact the disposition of a heme-bound ligand, including dioxygen, altering the reactivity patterns in such a way as to promote preferred chemical conversions, thereby avoiding the profound functional consequences of unwanted side reactions.


Assuntos
Pregnenolona/metabolismo , Progesterona/metabolismo , Esteroide 17-alfa-Hidroxilase/química , Esteroide 17-alfa-Hidroxilase/metabolismo , Domínio Catalítico , Heme/metabolismo , Humanos , Hidroxilação , Ligantes , Análise Espectral Raman , Especificidade por Substrato
11.
J Am Chem Soc ; 126(12): 3829-36, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15038737

RESUMO

Bleomycin is an antitumor agent whose cytotoxicity is dependent on its ability to bind DNA in the nucleus and effect double-stranded DNA cleavage, which is difficult for the cell to repair. In order for this DNA cleavage to occur, bleomycin must, through a series of reactions, form a low-spin Fe(III) complex, the putative "activated" form of the drug, HOO-Fe(III)bleomycin. The relative strengths of the bonds in the Fe(III)-OOH linkage have not been determined due to the weakness of the hydroperoxo-to-iron(III) charge-transfer transition. The much more stable HOO-Co(III)bleomycin has often been studied as a structural analogue of HOO-Fe(III)bleomycin, and hence, an understanding of the relative bond strengths in the Co-OOH linkage may serve to enhance our understanding of the analogous Fe-OOH linkage. In this report, we present resonance Raman data that identify two important vibrational modes in the Co-OOH linkage, the stretching modes, nu(Co-OOH) and nu(O-OH). Both of these vibrational modes were found to be unperturbed by complexation of the drug with calf thymus DNA. Advantage was also taken of the isostructural realtionship between Fe-bleomycin and Co-bleomycin to analyze and assign the high-frequency modes for HOO-Co(III)bleomycin and Co(III)bleomycin (A(2) and B(2)). These data could be useful for future studies of photoactivated Co-bleomycin and Co-bleomycin analogues in an attempt to characterize oxygen-independent DNA damage pathways.


Assuntos
Antimetabólitos Antineoplásicos/química , Bleomicina/análogos & derivados , Bleomicina/química , DNA/química , Animais , Antimetabólitos Antineoplásicos/farmacologia , Sítios de Ligação , Bleomicina/farmacologia , Bovinos , Estrutura Molecular , Análise Espectral Raman
12.
J Am Chem Soc ; 124(23): 6751-8, 2002 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-12047196

RESUMO

Resonance Raman spectra have been acquired for resting state mammalian lactoperoxidase, LPO(N), and its six-coordinate, low-spin (6CLS) cyanide complex, LPO(CN), as well as for various heme l containing fragments resulting from partial or complete proteolytic digestion. These proteolytic fragments provide a useful set of reference compounds for analysis of the LPO(N) and LPO(CN) enzymes, using various ligands to generate well-defined five-coordinate and six-coordinate high-spin (5CHS and 6CHS) species. In addition, these model compounds, which contain zero, one, or two covalently attached ester linkages to polypeptide chains, are quite useful for determining the extent to which the presence of the ester linkages at the heme periphery affects the characteristic heme resonance Raman marker bands. The spectral results not only provide strong evidence for the formulation of the resting state enzyme as a 6CHS species, but also confirm the previously documented anomalous intensities of several low-frequency resonance Raman bands, which are most reasonably interpreted to arise from a protein-induced out-of-plane distortion of the heme l macrocycle mediated by the covalent ester linkages to the associated polypeptide residues of the intact protein.


Assuntos
Heme/química , Lactoperoxidase/química , Animais , Sítios de Ligação , Bovinos , Heme/metabolismo , Lactoperoxidase/metabolismo , Conformação Proteica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA