Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Anaesth ; 133(2): 360-370, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862382

RESUMO

BACKGROUND: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ∼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain.


Assuntos
Linfócitos B , Dor Crônica , Estudo de Associação Genômica Ampla , Dor Pós-Operatória , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos B/imunologia , Dor Crônica/genética , Modelos Animais de Doenças , Hiperalgesia/genética , Camundongos Knockout , Dor Pós-Operatória/genética , Polimorfismo de Nucleotídeo Único
2.
Cell Rep ; 43(3): 113879, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416647

RESUMO

Maintenance of CD4 T cells during chronic infections is vital for limiting pathogen burden and disease recrudescence. Although inhibitory receptor expression by CD4 T cells is commonly associated with immune suppression and exhaustion, such cell-intrinsic mechanisms that control activation are also associated with cell survival. Using a mouse model of visceral leishmaniasis (VL), we discovered a subset of lymphocyte activation gene 3 (LAG-3)-expressing CD4 T cells that co-express CXCR5. Although LAG3+CXCR5+ CD4 T cells are present in naive mice, they expand during VL. These cells express gene signatures associated with self-renewal capacity, suggesting progenitor-like properties. When transferred into Rag1-/- mice, these LAG3+CXCR5+ CD4 T cells differentiated into multiple effector types upon Leishmania donovani infection. The transcriptional repressor B cell lymphoma-6 was partially required for their maintenance. Altogether, we propose that the LAG3+CXCR5+ CD4 T cell subset could play a role in maintaining CD4 T cell responses during persistent infections.


Assuntos
Linfócitos T CD4-Positivos , Leishmaniose Visceral , Humanos , Subpopulações de Linfócitos T , Fatores de Transcrição , Receptores CXCR5
3.
Mucosal Immunol ; 16(6): 801-816, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659724

RESUMO

Cluster of differentiation (CD4+) T cells consist of multiple subtypes, defined by expression of lineage-specific transcription factors, that contribute to the control of infectious diseases by providing help to immune and nonimmune target cells. In the current study, we examined the role of B cell lymphoma (Bcl)-6, a transcriptional repressor and master regulator of T follicular helper cell differentiation, in T cell-mediated host defense against intestinal and systemic parasitic infections. We demonstrate that while Bcl-6 expression by CD4+ T cells is critical for antibody-mediated protective immunity against secondary infection with the nematode Heligmosoides polygyrus bakeri, it paradoxically compromises worm expulsion during primary infection by limiting the generation of interleukin-10 (IL-10)-producing Gata3+ T helper 2 cells. Enhanced worm expulsion in the absence of Bcl-6 expressing T cells was associated with amplified intestinal goblet cell differentiation and increased generation of alternatively activated macrophages, effects that were reversed by neutralization of IL-10 signals. An increase in IL-10 production by Bcl-6-deficient CD4+ T cells was also evident in the context of systemic Leishmania donovani infection, but in contrast to Heligmosoides polygyrus bakeri infection, compromised T helper 1-mediated liver macrophage activation and increased susceptibility to this distinct parasitic challenge. Collectively, our studies suggest that host defense pathways that protect against parasite superinfection and lethal systemic protozoal infections can be engaged at the cost of compromised primary resistance to well-tolerated helminths.


Assuntos
Nematoides , Doenças Parasitárias , Animais , Interleucina-10 , Células Th2
4.
medRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945481

RESUMO

Chronic post-surgical pain affects a large proportion of people undergoing surgery, delaying recovery time and worsening quality of life. Although many environmental variables have been established as risk factors, less is known about genetic risk. To uncover genetic risk factors we performed genome-wide association studies in post-surgical cohorts of five surgery types- hysterectomy, mastectomy, abdominal, hernia, and knee- totaling 1350 individuals. Genetic associations between post-surgical chronic pain levels on a numeric rating scale (NRS) and additive genetic effects at common SNPs were evaluated. We observed genome-wide significant hits in almost all cohorts that displayed significance at the SNP, gene, and pathway levels. The cohorts were then combined via a GWAS meta-analysis framework for further analyses. Using partitioned heritability, we found that loci at genes specifically expressed in the immune system carried enriched heritability, especially genes related to B and T cells. The relevance of B cells in particular was then demonstrated in mouse postoperative pain assays. Taken altogether, our results suggest a role for the adaptive immune system in chronic post-surgical pain.

5.
Cell Rep ; 38(10): 110502, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235831

RESUMO

Since the vast majority of species solely rely on innate immunity for host defense, it stands to reason that a critical evolutionary trait like immunological memory evolved in this primitive branch of our immune system. There is ample evidence that vaccines such as bacillus Calmette-Guérin (BCG) induce protective innate immune memory responses (trained immunity) against heterologous pathogens. Here we show that while BCG vaccination significantly reduces morbidity and mortality against influenza A virus (IAV), it fails to provide protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In contrast to IAV, SARS-CoV-2 infection leads to unique pulmonary vasculature damage facilitating viral dissemination to other organs, including the bone marrow (BM), a central site for BCG-mediated trained immunity. Finally, monocytes from BCG-vaccinated individuals mount an efficient cytokine response to IAV infection, while this response is minimal following SARS-CoV-2. Collectively, our data suggest that the protective capacity of BCG vaccination is contingent on viral pathogenesis and tissue tropism.


Assuntos
COVID-19 , Vírus da Influenza A , Vacina BCG , COVID-19/prevenção & controle , Humanos , Imunidade Inata , SARS-CoV-2 , Vacinação
6.
Pain ; 163(7): e821-e836, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913882

RESUMO

ABSTRACT: The pathophysiology of fibromyalgia syndrome (FMS) remains elusive, leading to a lack of objective diagnostic criteria and targeted treatment. We globally evaluated immune system changes in FMS by conducting multiparametric flow cytometry analyses of peripheral blood mononuclear cells and identified a natural killer (NK) cell decrease in patients with FMS. Circulating NK cells in FMS were exhausted yet activated, evidenced by lower surface expression of CD16, CD96, and CD226 and more CD107a and TIGIT. These NK cells were hyperresponsive, with increased CCL4 production and expression of CD107a when co-cultured with human leukocyte antigen null target cells. Genetic and transcriptomic pathway analyses identified significant enrichment of cell activation pathways in FMS driven by NK cells. Skin biopsies showed increased expression of NK activation ligand, unique long 16-binding protein, on subepidermal nerves of patients FMS and the presence of NK cells near peripheral nerves. Collectively, our results suggest that chronic activation and redistribution of circulating NK cells to the peripheral nerves contribute to the immunopathology associated with FMS.


Assuntos
Fibromialgia , Fibromialgia/metabolismo , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares , Nervos Periféricos
7.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237304

RESUMO

Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Centro Germinativo/citologia , Imunidade Humoral , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Anticorpos/metabolismo , Formação de Anticorpos/imunologia , Antígenos de Helmintos/metabolismo , Apoptose , Medula Óssea/metabolismo , Contagem de Células , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta Imunológica , Imunização , Switching de Imunoglobulina , Memória Imunológica , Camundongos Knockout , Nematospiroides dubius/fisiologia , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/deficiência , Hipermutação Somática de Imunoglobulina , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Vacinação
8.
Nat Immunol ; 21(12): 1528-1539, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020661

RESUMO

Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1ß that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1ß, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Biomarcadores , Caspases/metabolismo , Movimento Celular/genética , Movimento Celular/imunologia , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais
9.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32584413

RESUMO

Antigen uptake and presentation by naive and germinal center (GC) B cells are different, with the former expressing even low-affinity BCRs efficiently capture and present sufficient antigen to T cells, whereas the latter do so more efficiently after acquiring high-affinity BCRs. We show here that antigen uptake and processing by naive but not GC B cells depend on Cbl and Cbl-b (Cbls), which consequently control naive B and cognate T follicular helper (Tfh) cell interaction and initiation of the GC reaction. Cbls mediate CD79A and CD79B ubiquitination, which is required for BCR-mediated antigen endocytosis and postendocytic sorting to lysosomes, respectively. Blockade of CD79A or CD79B ubiquitination or Cbls ligase activity is sufficient to impede BCR-mediated antigen processing and GC development. Thus, Cbls act at the entry checkpoint of the GC reaction by promoting naive B cell antigen presentation. This regulation may facilitate recruitment of naive B cells with a low-affinity BCR into GCs to initiate the process of affinity maturation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Formação de Anticorpos/imunologia , Antígenos CD/metabolismo , Linfócitos B/citologia , Comunicação Celular/imunologia , Endocitose , Imunidade Humoral , Intestinos/imunologia , Intestinos/parasitologia , Ativação Linfocitária/imunologia , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Mutagênese/genética , Mutação/genética , Nematospiroides dubius/imunologia , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Ubiquitinação
10.
Mucosal Immunol ; 13(2): 357-370, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31776431

RESUMO

Parasitic helminths cause significant damage as they migrate through host tissues to complete their life cycle. While chronic helminth infections are characterized by a well-described Type 2 immune response, the early, tissue-invasive stages are not well understood. Here we investigate the immune pathways activated during the early stages of Heligmosomoides polygyrus bakeri (Hpb), a natural parasitic roundworm of mice. In contrast to the Type 2 immune response present at later stages of infection, a robust Type 1 immune signature including IFNg production was dominant at the time of parasite invasion and granuloma formation. This early response was associated with an accumulation of activated Natural Killer (NK) cells, with no increase of other innate lymphoid cell populations. Parabiosis and confocal microscopy studies indicated that NK cells were recruited from circulation to the small intestine, where they surrounded parasitic larvae. NK cell recruitment required IFNγ receptor signaling, but was independent of CXCR3 expression. The depletion of tissue-infiltrating NK cells altered neither worm burden nor parasite fitness, but increased vascular injury, suggesting a role for NK cells in mediating tissue protection. Together, these data identify an unexpected role for NK cells in promoting disease tolerance during the invasive stage of an enteric helminth infection.


Assuntos
Trato Gastrointestinal/imunologia , Vigilância Imunológica , Intestinos/imunologia , Células Matadoras Naturais/imunologia , Nematospiroides dubius/fisiologia , Infecções por Strongylida/imunologia , Células Th1/metabolismo , Lesões do Sistema Vascular/imunologia , Animais , Movimento Celular , Feminino , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parabiose , Receptores CXCR/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Receptor de Interferon gama
11.
Cell Rep ; 29(2): 391-405.e5, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597099

RESUMO

Interleukin-17-producing γδ T (γδ17) cells play a central role in protective and pathogenic immune responses. However, the tissue-specific mechanisms that control the activation of these innate lymphocytes are not known. Here, we demonstrate that CD109, a glycosylphosphatidylinositol (GPI)-anchored protein highly expressed by keratinocytes, is an important regulator of skin homeostasis and γδ17 cell activation. Genetic deletion of CD109 results in spontaneous epidermal hyperplasia, aberrant accumulation of dermal-derived γδ17 cells, and enhanced susceptibility to psoriasiform inflammation. In this context, γδ17 activation requires interleukin (IL)-23 signals and is reversed by transient depletion of the skin microbiota. Mechanistically, CD109 restrains γδ17 cell activation in a cell-extrinsic manner by fortifying skin barrier integrity. Collectively, our data provide insight into the regulation of the skin IL-23/IL-17 immune axis and how homeostasis is maintained at this important barrier site.


Assuntos
Antígenos CD/metabolismo , Interleucina-17/biossíntese , Microbiota , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Pele/imunologia , Células Th17/metabolismo , Animais , Epiderme/metabolismo , Feminino , Deleção de Genes , Humanos , Inflamação/patologia , Interleucina-23/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/deficiência , Especificidade de Órgãos , Psoríase/imunologia , Psoríase/patologia , Pele/patologia
12.
Nat Commun ; 10(1): 22, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604754

RESUMO

Mechanisms regulating B cell development, activation, education in the germinal center (GC) and differentiation, underpin the humoral immune response. Protein arginine methyltransferase 5 (Prmt5), which catalyzes most symmetric dimethyl arginine protein modifications, is overexpressed in B cell lymphomas but its function in normal B cells is poorly defined. Here we show that Prmt5 is necessary for antibody responses and has essential but distinct functions in all proliferative B cell stages in mice. Prmt5 is necessary for B cell development by preventing p53-dependent and p53-independent blocks in Pro-B and Pre-B cells, respectively. By contrast, Prmt5 protects, via p53-independent pathways, mature B cells from apoptosis during activation, promotes GC expansion, and counters plasma cell differentiation. Phenotypic and RNA-seq data indicate that Prmt5 regulates GC light zone B cell fate by regulating transcriptional programs, achieved in part by ensuring RNA splicing fidelity. Our results establish Prmt5 as an essential regulator of B cell biology.


Assuntos
Linfócitos B/fisiologia , Proliferação de Células/fisiologia , Centro Germinativo/fisiologia , Imunidade Humoral/fisiologia , Proteína-Arginina N-Metiltransferases/fisiologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Centro Germinativo/citologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/fisiologia , Trichostrongyloidea/imunologia , Tricostrongiloidíase/imunologia , Tricostrongiloidíase/parasitologia , Proteína Supressora de Tumor p53/metabolismo
13.
Cell ; 172(1-2): 176-190.e19, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328912

RESUMO

The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Memória Imunológica , Mycobacterium bovis/imunologia , Transcriptoma , Animais , Linhagem Celular , Células Cultivadas , Epigênese Genética , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
14.
J Leukoc Biol ; 102(6): 1471-1480, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29018148

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that triggers a broad response, which includes the regulation of proinflammatory cytokine production by monocytes and macrophages. AHR is negatively regulated by a set of genes that it transcriptionally activates, including the AHR repressor (Ahrr) and the cytochrome P450 1 (Cyp1) family, which are critical for preventing exacerbated AHR activity. An imbalance in these regulatory mechanisms has been shown to cause severe defects in lymphoid cells. Therefore, we wanted to assess how AHR activation is regulated in monocytes and macrophages in the context of innate immune responses induced by pathogen-associated molecular patterns (PAMPs). We found that concomitant stimulation of primary human monocytes with PAMPs and the AHR agonist 6-formylindolo(3,2-b)carbazole (FICZ) led to a selective dose-dependent inhibition of Cyp1 family members induction. Two other AHR-dependent genes [Ahrr and NADPH quinone dehydrogenase 1 (Nqo1)] were not affected under these conditions, suggesting a split in the AHR regulation by PAMPs. This down-regulation of Cyp1 family members did not require de novo protein production nor signaling through p38, ERK, or PI3K-Akt-mammalian target of rapamycin (mTOR) pathways. Furthermore, such a split regulation of the AHR response was more apparent in GM-CSF-derived macrophages, a finding corroborated at the functional level by decreased CYP1 activity and decreased proinflammatory cytokine production in response to FICZ and LPS. Collectively, our findings identify a role for pattern recognition receptor (PRR) signaling in regulating the AHR response through selective down-regulation of Cyp1 expression in human monocytes and macrophages.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Carbazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocromo P-450 CYP1A1/biossíntese , Indução Enzimática/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/citologia , Transdução de Sinais/efeitos dos fármacos
15.
J Allergy Clin Immunol ; 140(6): 1604-1615.e5, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28216433

RESUMO

BACKGROUND: A number of food allergies (eg, fish, shellfish, and nuts) are lifelong, without any disease-transforming therapies, and unclear in their underlying immunology. Clinical manifestations of food allergy are largely mediated by IgE. Although persistent IgE titers have been attributed conventionally to long-lived IgE+ plasma cells (PCs), this has not been directly and comprehensively tested. OBJECTIVE: We sought to evaluate mechanisms underlying persistent IgE and allergic responses to food allergens. METHODS: We used a model of peanut allergy and anaphylaxis, various knockout mice, adoptive transfer experiments, and in vitro assays to identify mechanisms underlying persistent IgE humoral immunity over almost the entire lifespan of the mouse (18-20 months). RESULTS: Contrary to conventional paradigms, our data show that clinically relevant lifelong IgE titers are not sustained by long-lived IgE+ PCs. Instead, lifelong reactivity is conferred by allergen-specific long-lived memory B cells that replenish the IgE+ PC compartment. B-cell reactivation requires allergen re-exposure and IL-4 production by CD4 T cells. We define the half-lives of antigen-specific germinal centers (23.3 days), IgE+ and IgG1+ PCs (60 and 234.4 days, respectively), and clinically relevant cell-bound IgE (67.3 days). CONCLUSIONS: These findings can explain lifelong food allergies observed in human subjects as the consequence of allergen exposures that recurrently activate memory B cells and identify these as a therapeutic target with disease-transforming potential.


Assuntos
Anafilaxia/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Hipersensibilidade Alimentar/imunologia , Células Th2/imunologia , Alérgenos/imunologia , Animais , Arachis/imunologia , Células Cultivadas , Humanos , Imunidade Humoral , Imunoglobulina E/metabolismo , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Immunity ; 45(4): 831-846, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760339

RESUMO

T follicular helper (Tfh) cells are a CD4+ T cell subset critical for long-lived humoral immunity. We hypothesized that integrins play a decisive role in Tfh cell biology. Here we show that Tfh cells expressed a highly active form of leukocyte function-associated antigen-1 (LFA-1) that was required for their survival within the germinal center niche. In addition, LFA-1 promoted expression of Bcl-6, a transcriptional repressor critical for Tfh cell differentiation, and inhibition of LFA-1 abolished Tfh cell generation and prevented protective humoral immunity to intestinal helminth infection. Furthermore, we demonstrated that expression of Talin-1, an adaptor protein that regulates LFA-1 affinity, dictated Tfh versus Th2 effector cell differentiation. Collectively, our results define unique functions for LFA-1 in the Tfh cell effector program and suggest that integrin activity is important in lineage decision-making events in the adaptive immune system.


Assuntos
Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Células Cultivadas , Centro Germinativo/imunologia , Humanos , Imunidade Humoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/imunologia
17.
J Immunol ; 189(5): 2151-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22826320

RESUMO

Dendritic cells (DCs) are potent inducers of T cell immunity, and autologous DC vaccination holds promise for the treatment of cancers and chronic infectious diseases. In practice, however, therapeutic vaccines of this type have had mixed success. In this article, we show that brief exposure to inhibitors of mechanistic target of rapamycin (mTOR) in DCs during the period that they are responding to TLR agonists makes them particularly potent activators of naive CD8+ T cells and able to enhance control of B16 melanoma in a therapeutic autologous vaccination model in the mouse. The improved performance of DCs in which mTOR has been inhibited is correlated with an extended life span after activation and prolonged, increased expression of costimulatory molecules. Therapeutic autologous vaccination with DCs treated with TLR agonists plus the mTOR inhibitor rapamycin results in improved generation of Ag-specific CD8+ T cells in vivo and improved antitumor immunity compared with that observed with DCs treated with TLR agonists alone. These findings define mTOR as a molecular target for augmenting DC survival and activation, and document a novel pharmacologic approach for enhancing the efficacy of therapeutic autologous DC vaccination.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/transplante , Imunoterapia Adotiva/métodos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/fisiologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/uso terapêutico , Animais , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/metabolismo , Humanos , Lipopolissacarídeos/fisiologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Transgênicos , Transplante Autólogo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
18.
PLoS Pathog ; 8(1): e1002490, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22291593

RESUMO

In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection.


Assuntos
Fígado/imunologia , Pneumopatias Parasitárias/imunologia , Plasmócitos/imunologia , Receptores de Interleucina-10/antagonistas & inibidores , Schistosoma mansoni , Esquistossomose mansoni/imunologia , Animais , Anticorpos Anti-Helmínticos/genética , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Doença Crônica , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Cirrose Hepática/parasitologia , Pneumopatias Parasitárias/genética , Pneumopatias Parasitárias/metabolismo , Pneumopatias Parasitárias/parasitologia , Pneumopatias Parasitárias/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Plasmócitos/metabolismo , Plasmócitos/patologia , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/imunologia , Receptores de Interleucina-10/metabolismo , Esquistossomose mansoni/genética , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/patologia
19.
J Exp Med ; 207(5): 953-61, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20421390

RESUMO

Dendritic cells (DCs) play an important role in CD4(+) T helper (Th) cell differentiation and in the initiation of both protective and pathogenic immunity. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a DC growth factor critical for the induction of experimental autoimmune encephalomyelitis (EAE) and other autoimmune diseases, yet its mechanism of action in vivo is not fully defined. We show that GM-CSF is directly required for the accumulation of radiosensitive dermal-derived langerin(+)CD103(+) DCs in the skin and peripheral lymph nodes under steady-state and inflammatory conditions. Langerin(+)CD103(+) DCs stimulated naive myelin-reactive T cells to proliferate and produce IFN-gamma and IL-17. They were superior to other DC subsets in inducing expression of T-bet and promoting Th1 cell differentiation. Ablation of this subset in vivo conferred resistance to EAE. The current report reveals a previously unidentified role for GM-CSF in DC ontogeny and identifies langerin(+)CD103(+) DCs as an important subset in CD4(+) T cell-mediated autoimmune disease.


Assuntos
Antígenos CD/genética , Antígenos de Superfície/genética , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Cadeias alfa de Integrinas/genética , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/genética , Pele/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Doenças Autoimunes/imunologia , Diferenciação Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Imunização/métodos , Linfonodos/imunologia , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Células Th1/citologia , Células Th2/citologia
20.
Blood ; 113(14): 3190-7, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19196868

RESUMO

Mature myeloid cells (macrophages and CD11b(+) dendritic cells) form a prominent component of neuroinflammatory infiltrates in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). The mechanism by which these cells are replenished during relapsing and chronic neuroinflammation is poorly understood. Here we demonstrate that CD11b(+)CD62L(+)Ly6C(hi) monocytes with colony-forming potential are mobilized into the bloodstream by a granulocyte-macrophage colony-stimulating factor-dependent pathway immediately before EAE relapses. Circulating Ly6C(hi) monocytes traffic across the blood-brain barrier, up-regulate proinflammatory molecules, and differentiate into central nervous system dendritic cells and macrophages. Enrichment of Ly6C(hi) monocytes in the circulating pool is associated with an earlier onset and increased severity of clinical EAE. Our studies indicate that granulocyte-macrophage colony-stimulating factor-driven release of Ly6C(hi) precursors from the bone marrow prevents exhaustion of central nervous system myeloid populations during relapsing or chronic autoimmune demyelination, suggesting a novel pathway for therapeutic targeting.


Assuntos
Antígenos Ly/metabolismo , Movimento Celular/fisiologia , Sistema Nervoso Central/patologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/etiologia , Células Progenitoras Mieloides/fisiologia , Animais , Antígenos Ly/sangue , Sistema Nervoso Central/imunologia , Doença Crônica , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Mielopoese/genética , Recidiva , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA