Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934501

RESUMO

Macropinocytosis is a broadly conserved endocytic process discovered nearly 100 years ago, yet still poorly understood. It is prominent in cancer cell feeding, immune surveillance, uptake of RNA vaccines and as an invasion route for pathogens. Macropinocytic cells extend large cups or flaps from their plasma membrane to engulf droplets of medium and trap them in micron-sized vesicles. Here they are digested and the products absorbed. A major problem - discussed here - is to understand how cups are shaped and closed. Recently, lattice light-sheet microscopy has given a detailed description of this process in Dictyostelium amoebae, leading to the 'stalled-wave' model for cup formation and closure. This is based on membrane domains of PIP3 and active Ras and Rac that occupy the inner face of macropinocytic cups and are readily visible with suitable reporters. These domains attract activators of dendritic actin polymerization to their periphery, creating a ring of protrusive F-actin around themselves, thus shaping the walls of the cup. As domains grow, they drive a wave of actin polymerization across the plasma membrane that expands the cup. When domains stall, continued actin polymerization under the membrane, combined with increasing membrane tension in the cup, drives closure at lip or base. Modelling supports the feasibility of this scheme. No specialist coat proteins or contractile activities are required to shape and close cups: rings of actin polymerization formed around PIP3 domains that expand and stall seem sufficient. This scheme may be widely applicable and begs many biochemical questions.

2.
Science ; 382(6667): 223-230, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824668

RESUMO

Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.


Assuntos
Transporte Axonal , Neurônios , Fosfatos de Fosfatidilinositol , Vesículas Sinápticas , Humanos , Transporte Axonal/fisiologia , Cinesinas/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
4.
Philos Trans R Soc Lond B Biol Sci ; 374(1765): 20180158, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30967007

RESUMO

In macropinocytosis, cells take up micrometre-sized droplets of medium into internal vesicles. These vesicles are acidified and fused to lysosomes, their contents digested and useful compounds extracted. Indigestible contents can be exocytosed. Macropinocytosis has been known for approaching 100 years and is described in both metazoa and amoebae, but not in plants or fungi. Its evolutionary origin goes back to at least the common ancestor of the amoebozoa and opisthokonts, with apparent secondary loss from fungi. The primary function of macropinocytosis in amoebae and some cancer cells is feeding, but the conserved processing pathway for macropinosomes, which involves shrinkage and the retrieval of membrane to the cell surface, has been adapted in immune cells for antigen presentation. Macropinocytic cups are large actin-driven processes, closely related to phagocytic cups and pseudopods and appear to be organized around a conserved signalling patch of PIP3, active Ras and active Rac that directs actin polymerization to its periphery. Patches can form spontaneously and must be sustained by excitable kinetics with strong cooperation from the actin cytoskeleton. Growth-factor signalling shares core components with macropinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and we suggest that it evolved to take control of ancient feeding structures through a coupled growth factor receptor. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.


Assuntos
Evolução Biológica , Pinocitose/fisiologia , Transdução de Sinais/fisiologia , Amebozoários/fisiologia , Animais , Humanos
5.
PLoS Pathog ; 15(2): e1007551, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30730983

RESUMO

By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phosphatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)P). Here we show that its activity is essential during early phagosome maturation in Dictyostelium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and proteases, dramatically reducing the ability of cells to acidify newly formed phagosomes and digest their contents. Consequently, PIKfyve- cells were unable to generate an effective antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production plays a crucial and general role in ensuring early phagosomal maturation, protecting host cells from diverse pathogenic microbes.


Assuntos
Dictyostelium/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Adenosina Trifosfatases , Animais , Linhagem Celular , Dictyostelium/patogenicidade , Humanos , Hidrolases/metabolismo , Legionella pneumophila/patogenicidade , Legionelose/metabolismo , Macrófagos , Fagocitose , Fagossomos , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositóis , Transporte Proteico , Infecções por Protozoários/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-29686972

RESUMO

Cryptococcus neoformans is an environmental yeast that can cause opportunistic infections in humans. As infecting animals does not form part of its normal life-cycle, it has been proposed that the virulence traits that allow cryptococci to resist immune cells were selected through interactions with environmental phagocytes such as amoebae. Here, we investigate the interactions between C. neoformans and the social amoeba Dictyostelium discoideum. We show that like macrophages, D. discoideum is unable to kill C. neoformans upon phagocytosis. Despite this, we find that the yeast pass through the amoebae with an apparently normal phagocytic transit and are released alive by constitutive exocytosis after ~80 min. This is the canonical pathway in amoebae, used to dispose of indigestible material after nutrient extraction. Surprisingly however, we show that upon either genetic or pharmacological blockage of constitutive exocytosis, C. neoformans still escape from D. discoideum by a secondary mechanism. We demonstrate that constitutive exocytosis-independent egress is stochastic and actin-independent. This strongly resembles the non-lytic release of cryptococci by vomocytosis from macrophages, which do not perform constitutive exocytosis and normally retain phagocytosed material. Our data indicate that vomocytosis is functionally redundant for escape from amoebae, which thus may not be the primary driver for its evolutionary selection. Nonetheless, we show that vomocytosis of C. neoformans is mechanistically conserved in hosts ranging from amoebae to man, providing new avenues to understand this poorly-understood but important virulence mechanism.


Assuntos
Cryptococcus neoformans/patogenicidade , Dictyostelium/microbiologia , Exocitose/fisiologia , Fagocitose/fisiologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Virulência
7.
FEBS J ; 284(22): 3778-3790, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28544479

RESUMO

Macropinocytosis is a mechanism for the nonspecific bulk uptake and internalisation of extracellular fluid. This plays specific and distinct roles in diverse cell types such as macrophages, dendritic cells and neurons, by allowing cells to sample their environment, extract extracellular nutrients and regulate plasma membrane turnover. Macropinocytosis has recently been implicated in several diseases including cancer, neurodegenerative diseases and atherosclerosis. Uptake by macropinocytosis is also exploited by several intracellular pathogens to gain entry into host cells. Both capturing and subsequently processing large volumes of extracellular fluid poses a number of unique challenges for the cell. Macropinosome formation requires coordinated three-dimensional manipulation of the cytoskeleton to form shaped protrusions able to entrap extracellular fluid. The following maturation of these large vesicles then involves a complex series of membrane rearrangements to shrink and concentrate their contents, while delivering components required for digestion and recycling. Recognition of the diverse importance of macropinocytosis in physiology and disease has prompted a number of recent studies. In this article, we summarise advances in our understanding of both macropinosome formation and maturation, and seek to highlight the important unanswered questions.


Assuntos
Proteínas de Transporte/metabolismo , Extensões da Superfície Celular/fisiologia , Endossomos/fisiologia , Pinocitose/fisiologia , Animais , Humanos
8.
Traffic ; 15(11): 1235-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25131297

RESUMO

Generation and turnover of phosphatidylinositol 3-phosphate (PtdIns3P) signaling is essential for autophagosome formation and other membrane traffic processes. In both Dictyostelium discoideum and mammalian cells, autophagosomes are formed from specialized regions of the endoplasmic reticulum (ER), called omegasomes, which are enriched in the signaling lipid PtdIns3P. Vacuole membrane protein 1 (Vmp1) is a multispanning membrane protein localized at the ER that is required for autophagosome formation. There are conflicting reports in the literature as to whether Vmp1 is strictly required or not for autophagy-related PtdIns3P signaling and its hierarchical relationship with Atg1 and PI3K. We have now addressed these questions in the Dictyostelium model. We show that Dictyostelium cells lacking Vmp1 have elevated and aberrant PtdIns3P signaling on the ER, resulting in an increased and persistent recruitment of Atg18 and other autophagic proteins. This indicates that Vmp1 is not strictly essential for the generation of PtdIns3P signaling but rather suggests a role in the correct turnover or modulation of this signaling. Of interest, these PtdIns3P-enriched regions of the ER surround ubiquitinated protein aggregates but are unable to form functional autophagosomes. vmp1 null cells also have additional defects in macropinocytosis and growth, which are not shared by other autophagy mutants. Remarkably, we show that these defects and also the aberrant PtdIns3P distribution are largely suppressed by the concomitant loss of Atg1, indicating that aberrant autophagic signaling on the ER inhibits macropinocytosis. These results suggest that Atg1 functions upstream of Vmp1 in this signaling pathway and demonstrates a previously unappreciated link between abnormal autophagy signaling and macropinocytosis.


Assuntos
Autofagia , Dictyostelium/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Protozoários/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Transdução de Sinais
9.
Dev Cell ; 24(2): 169-81, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23369714

RESUMO

WASH causes actin to polymerize on vesicles involved in retrograde traffic and exocytosis. It is found within a regulatory complex, but the physiological roles of the other four members are unknown. Here we present genetic analysis of the subunits' individual functions in Dictyostelium. Mutants in each subunit are completely blocked in exocytosis. All subunits except FAM21 are required to drive actin assembly on lysosomes. Without actin, lysosomes never recycle vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) or neutralize to form postlysosomes. However, in FAM21 knockout lysosomes, WASH generates excessive, dynamic streams of actin. These successfully remove V-ATPase, neutralize, and form huge postlysosomes. The distinction between WASH and FAM21 phenotypes is conserved in human cells. Thus, FAM21 and WASH act at different steps of a cyclical pathway in which FAM21 mediates recycling of the complex back to acidic lysosomes. Recycling is driven by FAM21's interaction with capping protein, which couples the WASH complex to dynamic actin on vesicles.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Dictyostelium/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Protozoários/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Dictyostelium/genética , Exocitose , Humanos , Lisossomos/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Proteínas de Protozoários/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Transporte Vesicular/genética
10.
Autophagy ; 7(12): 1490-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22024750

RESUMO

The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.


Assuntos
Autofagia , Dictyostelium/citologia , Estresse Mecânico , Adaptação Fisiológica , Animais , Linhagem Celular Tumoral , Dictyostelium/fisiologia , Humanos , Fagossomos/metabolismo , Pressão , Serina-Treonina Quinases TOR/metabolismo
11.
J Cell Sci ; 123(Pt 13): 2246-55, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530573

RESUMO

Cell division requires the tight coordination of multiple cytoskeletal pathways. The best understood of these involves myosin-II-dependent constriction around the cell equator, but both Dictyostelium and mammalian cells also use a parallel, adhesion-dependent mechanism to generate furrows. We show that the actin nucleation factor SCAR/WAVE is strongly activated during Dictyostelium cytokinesis. This activation localises to large polar protrusions, driving separation of the daughter cells. This continues for 10 minutes after division before the daughter cells revert to normal random motility, indicating that this is a tightly regulated process. We demonstrate that SCAR activity is essential to drive myosin-II-independent cytokinesis, and stabilises the furrow, ensuring symmetrical division. SCAR is also responsible for the generation of MiDASes, mitosis-specific actin-rich adhesions. Loss of SCAR in both Dictyostelium and Drosophila leads to a similar mitotic phenotype, with severe mitotic blebbing, indicating conserved functionality. We also find that the microtubule end-binding protein EB1 is required to restrict SCAR localisation and direct migration. EB1-null cells also exhibit decreased adhesion during mitosis. Our data reveal a spindle-directed signalling pathway that regulates SCAR activity, migration and adhesion at mitosis.


Assuntos
Citocinese/fisiologia , Mitose/fisiologia , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Movimento Celular/fisiologia , Dictyostelium/citologia , Dictyostelium/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo
12.
Dis Model Mech ; 2(5-6): 306-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19383941

RESUMO

Bipolar mood disorder (manic depression) is a major psychiatric disorder whose molecular origins are unknown. Mood stabilisers offer patients both acute and prophylactic treatment, and experimentally, they provide a means to probe the underlying biology of the disorder. Lithium and other mood stabilisers deplete intracellular inositol and it has been proposed that bipolar mood disorder arises from aberrant inositol (1,4,5)-trisphosphate [IP(3), also known as Ins(1,4,5)P(3)] signalling. However, there is no definitive evidence to support this or any other proposed target; a problem exacerbated by a lack of good cellular models. Phosphatidylinositol (3,4,5)-trisphosphate [PIP(3), also known as PtdIns(3,4,5)P(3)] is a prominent intracellular signal molecule within the central nervous system (CNS) that regulates neuronal survival, connectivity and synaptic function. By using the genetically tractable organism Dictyostelium, we show that lithium suppresses PIP(3)-mediated signalling. These effects extend to the human neutrophil cell line HL60. Mechanistically, we show that lithium attenuates phosphoinositide synthesis and that its effects can be reversed by overexpression of inositol monophosphatase (IMPase), consistent with the inositol-depletion hypothesis. These results demonstrate a lithium target that is compatible with our current knowledge of the genetic predisposition for bipolar disorder. They also suggest that lithium therapy might be beneficial for other diseases caused by elevated PIP(3) signalling.


Assuntos
Antimaníacos/farmacologia , Dictyostelium/citologia , Dictyostelium/efeitos dos fármacos , Lítio/farmacologia , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Quimiotaxia/efeitos dos fármacos , Células HL-60 , Humanos
13.
Curr Biol ; 18(18): R864-6, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18812082

RESUMO

Chemotaxis uses intertwined signalling pathways, each individually dispensable. Recent work shows that Dictyostelium PKB/Akt can be spatially regulated independently of phosphatidylinositol (3,4,5)-trisphosphate via phosphorylation by TOR complex 2, placing this complex at the hub of chemotaxis.


Assuntos
Quimiotaxia/fisiologia , Dictyostelium/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fosfatidilinositol 3-Quinases/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(16): 5998-6003, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18413611

RESUMO

The Rapoport-Luebering glycolytic bypass comprises evolutionarily conserved reactions that generate and dephosphorylate 2,3-bisphosphoglycerate (2,3-BPG). For >30 years, these reactions have been considered the responsibility of a single enzyme, the 2,3-BPG synthase/2-phosphatase (BPGM). Here, we show that Dictyostelium, birds, and mammals contain an additional 2,3-BPG phosphatase that, unlike BPGM, removes the 3-phosphate. This discovery reveals that the glycolytic pathway can bypass the formation of 3-phosphoglycerate, which is a precursor for serine biosynthesis and an activator of AMP-activated protein kinase. Our 2,3-BPG phosphatase activity is encoded by the previously identified gene for multiple inositol polyphosphate phosphatase (MIPP1), which we now show to have dual substrate specificity. By genetically manipulating Mipp1 expression in Dictyostelium, we demonstrated that this enzyme provides physiologically relevant regulation of cellular 2,3-BPG content. Mammalian erythrocytes possess the highest content of 2,3-BPG, which controls oxygen binding to hemoglobin. We determined that total MIPP1 activity in erythrocytes at 37 degrees C is 0.6 mmol 2,3-BPG hydrolyzed per liter of cells per h, matching previously published estimates of the phosphatase activity of BPGM. MIPP1 is active at 4 degrees C, revealing a clinically significant contribution to 2,3-BPG loss during the storage of erythrocytes for transfusion. Hydrolysis of 2,3-BPG by human MIPP1 is sensitive to physiologic alkalosis; activity decreases 50% when pH rises from 7.0 to 7.4. This phenomenon provides a homeostatic mechanism for elevating 2,3-BPG levels, thereby enhancing oxygen release to tissues. Our data indicate greater biological significance of the Rapoport-Luebering shunt than previously considered.


Assuntos
2,3-Difosfoglicerato/metabolismo , Evolução Molecular , Glicólise , Monoéster Fosfórico Hidrolases/metabolismo , 2,3-Difosfoglicerato/análise , 2,3-Difosfoglicerato/química , Alcalose , Sequência de Aminoácidos , Animais , Aves , Dictyostelium/enzimologia , Eritrócitos/química , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Oxigênio/metabolismo , Monoéster Fosfórico Hidrolases/química , Fosforilação , Proteínas de Protozoários/química , Ratos
15.
Mol Biol Cell ; 18(12): 4772-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17898079

RESUMO

Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P(3) on the membrane nearest the polarizing signal and PI(3,4,5)P(3) dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P(2), could have important consequences for PI(3,4,5)P(3) localization. We investigate the role of PLC in PI(3,4,5)P(3)-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P(3) after cAMP stimulation, as monitored by the PI(3,4,5)P(3)-specific pleckstrin homology (PH)-domain of CRAC (PH(CRAC)GFP). In contrast, PLC overexpression elevates PI(3,4,5)P(3) and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P(3) gradient.


Assuntos
Quimiotaxia , Dictyostelium/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Cromonas/farmacologia , AMP Cíclico/metabolismo , Dictyostelium/citologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Regulação Enzimológica da Expressão Gênica , Morfolinas/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fosfolipases Tipo C/deficiência , Fosfolipases Tipo C/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA