Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
ACS Chem Biol ; 18(2): 404-418, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638351

RESUMO

Necrostatin-1 blocks ferroptosis via an unknown mechanism and necroptosis through inhibition of receptor-interacting protein kinase-1 (RIP1). We report that necrostatin-1 suppresses cyclooxygenase-2-dependent prostaglandin biosynthesis in lipopolysaccharide-treated RAW264.7 macrophages (IC50 ∼ 100 µM). This activity is shared by necrostatin-1i (IC50 ∼ 50 µM), which lacks RIP1 inhibitory activity, but not the RIP1 inhibitors necrostatin-1s or deschloronecrostatin-1s. Furthermore, we show that the potent ferroptosis inhibitors and related compounds ferrostatin-1, phenoxazine, phenothiazine, and 10-methylphenothiazine strongly inhibit cellular prostaglandin biosynthesis with IC50's in the range of 30 nM to 3.5 µM. None of the compounds inhibit lipopolysaccharide-mediated cyclooxygenase-2 protein induction. In the presence of activating hydroperoxides, the necrostatins and ferroptosis inhibitors range from low potency inhibition to stimulation of in vitro cyclooxygenase-2 activity; however, inhibitory potency is increased under conditions of low peroxide tone. The ferroptosis inhibitors are highly effective reducing substrates for cyclooxygenase-2's peroxidase activity, suggesting that they act by suppressing hydroperoxide-mediated activation of the cyclooxygenase active site. In contrast, for the necrostatins, cellular prostaglandin synthesis inhibition does not correlate with peroxidase-reducing activity but rather with the presence of a thiohydantoin substituent, which conveys the ability to reduce the endoperoxide intermediate prostaglandin H2 to prostaglandin F2α in vitro. This finding suggests that necrostatin-1 blocks cellular prostaglandin synthesis and ferroptosis via a redox mechanism distinct from action as a one-electron donor. The results indicate that a wide range of compounds derived from redox-active chemical scaffolds can block cellular prostaglandin biosynthesis.


Assuntos
Ferroptose , Lipopolissacarídeos , Ciclo-Oxigenase 2 , Lipopolissacarídeos/farmacologia , Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Prostaglandinas , Macrófagos/metabolismo
2.
ACS Chem Biol ; 17(7): 1714-1722, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35786843

RESUMO

Cyclooxygenase-2 (COX-2) expression is up-regulated in inflammatory tissues and many premalignant and malignant tumors. Assessment of COX-2 protein in vivo, therefore, promises to be a powerful strategy to distinguish pathologic cells from normal cells in a complex disease setting. Herein, we report the first redox-activatable COX-2 probe, fluorocoxib Q (FQ), for in vivo molecular imaging of pathogenesis. FQ inhibits COX-2 selectively in purified enzyme and cell-based assays. FQ exhibits extremely low fluorescence and displays time- and concentration-dependent fluorescence enhancement upon exposure to a redox environment. FQ enters the cells freely and binds to the COX-2 enzyme. FQ exhibits high circulation half-life and metabolic stability sufficient for target site accumulation and demonstrates COX-2-targeted uptake and retention in cancer cells and pathologic tissues. Once taken up, it undergoes redox-mediated transformation into a fluorescent compound fluorocoxib Q-H that results in high signal-to-noise contrast and differentiates pathologic tissues from non-pathologic tissues for real-time in vivo imaging.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Neoplasias , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Corantes Fluorescentes/química , Oxirredução
3.
Addict Biol ; 27(4): e13183, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754107

RESUMO

Attenuating enzymatic degradation of endocannabinoids (eCBs) by fatty acid amide hydrolase (FAAH) reduces cannabis withdrawal symptoms in preclinical and clinical studies. In mice, blocking cyclooxygenase-2 (COX-2) activity increases central eCB levels by inhibiting fatty acid degradation. This placebo-controlled study examined the effects of the FDA-approved COX-2 selective inhibitor, celecoxib, on cannabis withdrawal, 'relapse', and circulating eCBs in a human laboratory model of cannabis use disorder. Daily, nontreatment-seeking cannabis smokers (12M, 3F) completed a crossover study comprising two 11-day study phases (separated by >14 days for medication clearance). In each phase, the effects of daily BID placebo (0 mg) or celecoxib (200 mg) on cannabis (5.3% THC) intoxication, withdrawal symptoms (4 days of inactive cannabis self-administration) and 'relapse' (3 days of active cannabis self-administration following abstinence) were assessed. Outcome measures included mood, cannabis self-administration, sleep, food intake, cognitive performance, tobacco cigarette use and circulating eCBs and related lipids. Under placebo maintenance, cannabis abstinence produced characteristic withdrawal symptoms (negative mood, anorexia and dreaming) relative to cannabis administration and was associated with increased OEA (a substrate of FAAH) and oleic acid (metabolite of OEA), with no change in eCB levels. Compared to placebo, celecoxib improved subjective (but not objective) measures of sleep and did not affect mood or plasma levels of eCBs or associated lipids and increased cannabis craving. The overall absence of effects on cannabis withdrawal symptoms, self-administration or circulating eCBs relative to placebo, combined with an increase in cannabis craving, suggests celecoxib does not show promise as a potential pharmacotherapy for CUD.


Assuntos
Cannabis , Abuso de Maconha , Síndrome de Abstinência a Substâncias , Agonistas de Receptores de Canabinoides , Celecoxib/uso terapêutico , Estudos Cross-Over , Ciclo-Oxigenase 2/uso terapêutico , Dronabinol , Endocanabinoides , Humanos , Abuso de Maconha/psicologia , Recidiva , Fumantes , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia
4.
Oncogene ; 41(10): 1518-1525, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031771

RESUMO

Metastatic outgrowth is supported by metabolic adaptations that may differ from the primary tumor of origin. However, it is unknown if such adaptations are therapeutically actionable. Here we report a novel aminopyridine compound that targets a unique Phosphogluconate Dehydrogenase (PGD)-dependent metabolic adaptation in distant metastases from pancreatic cancer patients. Compared to structurally similar analogs, 6-aminopicolamine (6AP) potently and selectively reversed PGD-dependent metastatic properties, including intrinsic tumorigenic capacity, excess glucose consumption, and global histone hyperacetylation. 6AP acted as a water-soluble prodrug that was converted into intracellular bioactive metabolites that inhibited PGD in vitro, and 6AP monotherapy demonstrated anti-metastatic efficacy with minimal toxicity in vivo. Collectively, these studies identify 6AP and possibly other 6-aminopyridines as well-tolerated prodrugs with selectivity for metastatic pancreatic cancers. If unique metabolic adaptations are a common feature of metastatic or otherwise aggressive human malignancies, then such dependencies could provide a largely untapped pool of druggable targets for patients with advanced cancers.


Assuntos
Neoplasias Pancreáticas , Pró-Fármacos , Aminopiridinas , Carcinogênese , Histonas , Humanos , Neoplasias Pancreáticas/patologia , Fosfogluconato Desidrogenase , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
5.
ACS Med Chem Lett ; 11(10): 1875-1880, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062167

RESUMO

Clinical imaging approaches to detect inflammatory biomarkers, such as cyclooxygenase-2 (COX-2), may facilitate the diagnosis and therapy of inflammatory diseases. To this end, we report the discovery of N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide chloride salt (fluorocoxib D), a hydrophilic analog of fluorocoxib A. Fluorocoxib D inhibits COX-2 selectively in purified enzyme preparations and cells. It exhibits adequate photophysical properties to enable detection of COX-2 in intact cells, in a mouse model of carrageenan-induced acute footpad inflammation and inflammation in a mouse model of osteoarthritis. COX-2-selectivity was verified either by blocking the enzyme's active site with celecoxib or by molecular imaging with nontargeted 5-carboxy-X-rhodamine dye. These data indicate that fluorocoxib D is an ideal candidate for early detection of inflammatory or neoplastic lesions expressing elevated levels of COX-2.

6.
ACS Omega ; 4(5): 9251-9261, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31172046

RESUMO

In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.

7.
Anal Chem ; 89(2): 1299-1306, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27982582

RESUMO

Post-translational modifications (PTMs) affect protein function, localization, and stability, yet very little is known about the ratios of these modifications. Here, we describe a novel method to quantitate and assess the relative stoichiometry of Lys and Arg modifications (QuARKMod) in complex biological settings. We demonstrate the versatility of this platform in monitoring recombinant protein modification of peptide substrates, PTMs of individual histones, and the relative abundance of these PTMs as a function of subcellular location. Lastly, we describe a product ion scanning technique that offers the potential to discover unexpected and possibly novel Lys and Arg modifications. In summary, this approach yields accurate quantitation and discovery of protein PTMs in complex biological systems without the requirement of high mass accuracy instrumentation.


Assuntos
Arginina/análise , Cromatografia Líquida de Alta Pressão/métodos , Histonas/química , Lisina/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Células HEK293 , Humanos , Hidrólise , Histona Desmetilases com o Domínio Jumonji/química , Proteínas Recombinantes/química
8.
ACS Chem Biol ; 11(11): 3052-3060, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27588346

RESUMO

Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anticancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2's allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2 but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Cinética , Camundongos , Camundongos Nus
9.
Methods Mol Biol ; 1412: 205-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27245906

RESUMO

The endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide (AEA), are endogenous ligands for the cannabinoid receptors (CB1 and CB2) and are implicated in a wide array of physiological processes. These neutral arachidonic acid (AA) derivatives have been identified as efficient substrates for the second isoform of the cyclooxygenase enzyme (COX-2). A diverse family of prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs) is generated by the action of COX-2 (and downstream prostaglandin synthases) on 2-AG and AEA. As the biological importance of the endocannabinoid system becomes more apparent, there is a tremendous need for robust, sensitive, and efficient analytical methodology for the endocannabinoids and their metabolites. In this chapter, we describe methodology suitable for carrying out oxygenation of endocannabinoids by COX-2, and analysis of products of endocannabinoid oxygenation by COX-2 and of endocannabinoids themselves from in vitro and cell assays.


Assuntos
Bioensaio , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides/metabolismo , Oxirredução , Animais , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Linhagem Celular , Cromatografia Líquida , Endocanabinoides/química , Glicerídeos/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Camundongos , Alcamidas Poli-Insaturadas/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem
10.
Biomaterials ; 92: 71-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27043768

RESUMO

Cyclooxygenase-2 (COX-2) is expressed in virtually all solid tumors and its overexpression is a hallmark of inflammation. Thus, it is a potentially powerful biomarker for the early clinical detection of inflammatory disease and human cancers. We report a reactive oxygen species (ROS) responsive micellar nanoparticle, PPS-b-POEGA, that solubilizes the first fluorescent COX-2-selective inhibitor fluorocoxib A (FA) for COX-2 visualization in vivo. Pharmacokinetics and biodistribution of FA-PPS-b-POEGA nanoparticles (FA-NPs) were assessed after a fully-aqueous intravenous (i.v.) administration in wild-type mice and revealed 4-8 h post-injection as an optimal fluorescent imaging window. Carrageenan-induced inflammation in the rat and mouse footpads and 1483 HNSCC tumor xenografts were successfully visualized by FA-NPs with fluorescence up to 10-fold higher than that of normal tissues. The targeted binding of the FA cargo was blocked by pretreatment with the COX-2 inhibitor indomethacin, confirming COX-2-specific binding and local retention of FA at pathological sites. Our collective data indicate that FA-NPs are the first i.v.-ready FA formulation, provide high signal-to-noise in inflamed, premalignant, and malignant tissues, and will uniquely enable clinical translation of the poorly water-soluble FA compound.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Indóis/farmacologia , Inflamação/enzimologia , Nanopartículas/química , Neoplasias/enzimologia , Rodaminas/farmacologia , Animais , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Feminino , Humanos , Indóis/administração & dosagem , Indóis/farmacocinética , Indóis/toxicidade , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Camundongos Nus , Imagem Molecular , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Polímeros/síntese química , Polímeros/química , Rodaminas/administração & dosagem , Rodaminas/farmacocinética , Rodaminas/toxicidade , Distribuição Tecidual/efeitos dos fármacos
11.
Neuro Oncol ; 18(10): 1379-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27022132

RESUMO

BACKGROUND: In glioblastoma (GBM), Id1 serves as a functional marker for self-renewing cancer stem-like cells. We investigated the mechanism by which cyclooxygenase-2 (Cox-2)-derived prostaglandin E2 (PGE2) induces Id1 and increases GBM self-renewal and radiation resistance. METHODS: Mouse and human GBM cells were stimulated with dimethyl-PGE2 (dmPGE2), a stabilized form of PGE2, to test for Id1 induction. To elucidate the signal transduction pathway governing the increase in Id1, a combination of short interfering RNA knockdown and small molecule inhibitors and activators of PGE2 signaling were used. Western blotting, quantitative real-time (qRT)-PCR, and chromatin immunoprecipitation assays were employed. Sphere formation and radiation resistance were measured in cultured primary cells. Immunohistochemical analyses were carried out to evaluate the Cox-2-Id1 axis in experimental GBM. RESULTS: In GBM cells, dmPGE2 stimulates the EP4 receptor leading to activation of ERK1/2 MAPK. This leads, in turn, to upregulation of the early growth response1 (Egr1) transcription factor and enhanced Id1 expression. Activation of this pathway increases self-renewal capacity and resistance to radiation-induced DNA damage, which are dependent on Id1. CONCLUSIONS: In GBM, Cox-2-derived PGE2 induces Id1 via EP4-dependent activation of MAPK signaling and the Egr1 transcription factor. PGE2-mediated induction of Id1 is required for optimal tumor cell self-renewal and radiation resistance. Collectively, these findings identify Id1 as a key mediator of PGE2-dependent modulation of radiation response and lend insight into the mechanisms underlying radiation resistance in GBM patients.


Assuntos
Neoplasias Encefálicas/patologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Glioblastoma/patologia , Proteína 1 Inibidora de Diferenciação/metabolismo , Tolerância a Radiação/fisiologia , Animais , Western Blotting , Neoplasias Encefálicas/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
12.
FASEB J ; 30(1): 394-404, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26420849

RESUMO

A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing those with anti-inflammatory activity.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cinamatos/farmacologia , Macrófagos/efeitos dos fármacos , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Tromboxanos/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Células Cultivadas , Cinamatos/síntese química , Humanos , Macrófagos/metabolismo , Especificidade por Substrato
13.
Chem Res Toxicol ; 28(12): 2334-42, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26469224

RESUMO

Chronic inflammation results in increased production of reactive oxygen species (ROS), which can oxidize cellular molecules including lipids and DNA. Our laboratory has shown that 3-(2-deoxy-ß-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) is the most abundant DNA adduct formed from the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacterial and mammalian cells and is repaired via the nucleotide excision repair system. Here, we report that M1dG levels in intact DNA were increased from basal levels of 1 adduct per 10(8) nucleotides to 2 adducts per 10(6) nucleotides following adenine propenal treatment of RKO, HEK293, or HepG2 cells. We also found that M1dG in genomic DNA was oxidized in a time-dependent fashion to a single product, 6-oxo-M1dG (to ∼ 5 adducts per 10(7) nucleotides), and that this oxidation correlated with a decline in M1dG levels. Investigations in RAW264.7 macrophages indicate the presence of high basal levels of M1dG (1 adduct per 10(6) nucleotides) and the endogenous formation of 6-oxo-M1dG. This is the first report of the production of 6-oxo-M1dG in genomic DNA in intact cells, and it has significant implications for understanding the role of inflammation in DNA damage, mutagenesis, and repair.


Assuntos
Adutos de DNA/química , Nucleosídeos de Purina/química , Adenina/análogos & derivados , Adenina/toxicidade , Animais , Núcleo Celular/genética , Células Cultivadas , Cromatografia Líquida , Células HEK293 , Humanos , Peroxidação de Lipídeos , Macrófagos/efeitos dos fármacos , Espectrometria de Massas , Oxirredução
14.
J Biomed Opt ; 20(5): 50502, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25970082

RESUMO

Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancercell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116)or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacocinética , Ciclo-Oxigenase 2/metabolismo , Microscopia de Fluorescência/métodos , Técnicas de Sonda Molecular , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Feminino , Aumento da Imagem/métodos , Raios Infravermelhos , Camundongos , Camundongos Nus , Técnicas de Diagnóstico Molecular/métodos , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Chem Res Toxicol ; 27(10): 1732-42, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25211669

RESUMO

Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not. N(ε)-Oxopropenyllysine, a lysine-lysine cross-link, and S-oxopropenyl cysteine are the major products. Comprehensive profiling of the reaction of adenine propenal with human serum albumin and the DNA repair protein, XPA, revealed that the only stable adduct is N(ε)-oxopropenyllysine. The most reactive sites for modification in human albumin are K190 and K351. Three sites of modification of XPA are in the DNA-binding domain, and two sites are subject to regulatory acetylation. Modification by adenine propenal dramatically reduces XPA's ability to bind to a DNA substrate.


Assuntos
Adenina/análogos & derivados , Albumina Sérica/química , Proteína de Xeroderma Pigmentoso Grupo A/química , Adenina/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Cisteína/química , Polarização de Fluorescência , Humanos , Lisina/química , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas em Tandem
16.
Cancer Prev Res (Phila) ; 6(7): 646-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682075

RESUMO

COX-2 and 5-lipoxygenase (5-LO) use arachidonic acid for the synthesis of eicosanoids that have been implicated in carcinogenesis and cardiovascular disease. The ability of celecoxib, a selective COX-2 inhibitor, to redirect arachidonic acid into the 5-LO pathway can potentially reduce its efficacy as a chemopreventive agent and increase the risk of cardiovascular complications. Levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E4 (LTE4), biomarkers of the COX and 5-LO pathways, are elevated in smokers. Here, we investigated the effects of zileuton, a 5-LO inhibitor, versus zileuton and celecoxib for 6 ± 1 days on urinary PGE-M and LTE4 levels in smokers. Treatment with zileuton led to an 18% decrease in PGE-M levels (P = 0.03); the combination of zileuton and celecoxib led to a 62% reduction in PGE-M levels (P < 0.001). Levels of LTE4 decreased by 61% in subjects treated with zileuton alone (P < 0.001) and were unaffected by the addition of celecoxib. Although zileuton use was associated with a small overall decrease in PGE-M levels, increased PGE-M levels were found in a subset (19 of 52) of subjects. Notably, the addition of celecoxib to the 5-LO inhibitor protected against the increase in urinary PGE-M levels (P = 0.03). In conclusion, zileuton was an effective inhibitor of 5-LO activity resulting in marked suppression of urinary LTE4 levels and possible redirection of arachidonic acid into the COX-2 pathway in a subset of subjects. Combining celecoxib and zileuton was associated with inhibition of both the COX-2 and 5-LO pathways manifested as reduced levels of urinary PGE-M and LTE4.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Hidroxiureia/análogos & derivados , Leucotrieno E4/urina , Inibidores de Lipoxigenase/farmacologia , Prostaglandinas/urina , Pirazóis/farmacologia , Fumar , Sulfonamidas/farmacologia , Adulto , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/metabolismo , Biomarcadores/urina , Celecoxib , Cromatografia Líquida , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Hidroxiureia/farmacologia , Masculino , Dose Máxima Tolerável , Prognóstico , Espectrometria de Massas em Tandem
17.
J Med Chem ; 55(5): 2287-300, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22263894

RESUMO

Prostaglandins (PGs) are powerful lipid mediators in many physiological and pathophysiological responses. They are produced by oxidation of arachidonic acid (AA) by cyclooxygenases (COX-1 and COX-2) followed by metabolism of endoperoxide intermediates by terminal PG synthases. PG biosynthesis is inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs). Specific inhibition of COX-2 has been extensively investigated, but relatively few COX-1-selective inhibitors have been described. Recent reports of a possible contribution of COX-1 in analgesia, neuroinflammation, or carcinogenesis suggest that COX-1 is a potential therapeutic target. We designed, synthesized, and evaluated a series of (E)-2'-des-methyl-sulindac sulfide (E-DMSS) analogues for inhibition of COX-1. Several potent and selective inhibitors were discovered, and the most promising compounds were active against COX-1 in intact ovarian carcinoma cells (OVCAR-3). The compounds inhibited tumor cell proliferation but only at concentrations >100-fold higher than the concentrations that inhibit COX-1 activity. E-DMSS analogues may be useful probes of COX-1 biology in vivo and promising leads for COX-1-targeted therapeutic agents.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Sulindaco/análogos & derivados , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Ovinos , Estereoisomerismo , Relação Estrutura-Atividade , Sulindaco/síntese química , Sulindaco/química , Sulindaco/farmacologia
18.
Chem Res Toxicol ; 25(2): 454-61, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22211372

RESUMO

Oxidative stress triggers DNA and lipid peroxidation, leading to the formation of electrophiles that react with DNA to form adducts. A product of this pathway, (3-(2'-deoxy-ß-d-erythro-pentofuranosyl)-pyrimido[1,2-α]purine-10(3H)-one), or M(1)dG, is mutagenic in bacterial and mammalian cells and is repaired by the nucleotide excision repair pathway. In vivo, M(1)dG is oxidized to a primary metabolite, (3-(2-deoxy-ß-d-erythro-pentofuranosyl)-pyrimido[1,2-α]purine-6,10(3H,5H)-dione, or 6-oxo-M(1)dG, which is excreted in urine, bile, and feces. We have developed a specific monoclonal antibody against 6-oxo-M(1)dG and have incorporated this antibody into a procedure for the immunoaffinity isolation of 6-oxo-M(1)dG from biological matrices. The purified analyte is quantified by LC-MS/MS using a stable isotope-labeled analogue ([(15)N(5)]-6-oxo-M(1)dG) as an internal standard. Healthy male Sprague-Dawley rats excreted 6-oxo-M(1)dG at a rate of 350-1893 fmol/kg·d in feces. This is the first report of the presence of the major metabolite of M(1)dG in rodents without exogenous introduction of M(1)dG.


Assuntos
Anticorpos Monoclonais/imunologia , Adutos de DNA/análise , Desoxiguanosina/análise , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Adutos de DNA/imunologia , Adutos de DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/imunologia , Desoxiguanosina/metabolismo , Ensaio de Imunoadsorção Enzimática , Fezes/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
19.
Cancer Prev Res (Phila) ; 4(10): 1536-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21900596

RESUMO

COX-2 is a major contributor to the inflammatory response and cancer progression so it is an important target for prevention and therapy. COX-2 is absent or expressed at low levels in most epithelial cells but is found at high levels in inflammatory lesions, and many premalignant and malignant tumors. Thus, it is an attractive target for molecular imaging. We report a series of novel fluorinated imaging agents, derived from indomethacin or celecoxib that selectively inhibit COX-2. The most promising lead, compound 7, was a fluorinated derivative of celecoxib. Kinetic analysis revealed that this fluorinated compound is a slow, tight-binding inhibitor of COX-2 and exhibits minimal inhibitory activity against COX-1. Efficient incorporation of (18)F into compound 7 by radiochemical synthesis and intravenous injection provided sufficient signal for in vivo positron emission tomography (PET) imaging. Selective uptake of (18)F-7 was observed in inflamed rat paws compared with the noninflamed contralateral paws and uptake was blocked by pretreatment with the COX-2 inhibitor, celecoxib. Uptake of (18)F-7 was not observed when inflammation was induced in COX-2-null mice. In nude mice bearing both a COX-2-expressing human tumor xenograft (1483) and a COX-2-negative xenograft (HCT116), (18)F-7 selectively accumulated in the COX-2-expressing tumor. Accumulation was blocked by pretreatment of the animals with celecoxib. The in vitro and in vivo properties of compound 7 suggest it will be a useful probe for early detection of cancer and for evaluation of the COX-2 status of premalignant and malignant tumors.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Inflamação/diagnóstico , Imagem Molecular , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Celecoxib , Feminino , Halogenação , Humanos , Indometacina/química , Masculino , Camundongos , Camundongos Nus , Pirazóis/química , Ratos , Ratos Sprague-Dawley , Sulfonamidas/química , Células Tumorais Cultivadas
20.
Cancer Prev Res (Phila) ; 4(1): 150-60, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21205743

RESUMO

The antitumor effects of nonsteroidal anti-inflammatory drugs (NSAID) are assumed to be due to the inhibition of COX activity, but COX-independent mechanisms may also play an important role. NSAID-activated gene (NAG-1/GDF15) is induced by NSAIDs and has antitumorigenic activities. To determine the contribution of COX-2 inhibition and NAG-1/GDF15 expression to the prevention of colon carcinogenesis by NSAIDs, we evaluated several sulindac derivatives [des-methyl (DM)-sulindac sulfide and its prodrug DM-sulindac] that do not inhibit COX-2 activity. Sulindac sulfide and DM-sulindac induced the expression of NAG-1/GDF15 in HCT116 cells as determined by quantitative real-time PCR and Western blot. We fed APC/Min mice with 320 ppm of sulindac and doses of DM-sulindac. Only sulindac significantly inhibited tumor formation inAPC/Min mice. To determine the pharmacokinetic properties of sulindac and DM-sulindac in vivo, wild-type C57/B6 mice were fed with sulindac and DM-sulindac at 80, 160, and 320 ppm. High-performance liquid chromatography analysis revealed that the conversion of DM-sulindac to DM-sulindac sulfide (active form) was less efficient than the conversion of sulindac to sulindac sulfide (active form) in the mice. Lower levels of DM-sulindac sulfide accumulated in intestinal and colon tissues in comparison with sulindac sulfide. In addition, NAG-1/GDF15 was induced in the liver of sulindac-fed mice but not in the DM-sulindac-fed mice. Collectively, our results suggest that the tumor-inhibitory effects of sulindac in APC/Min mice may be due to, in part, NAG-1/GDF15 induction in the liver. Our study also suggests that pharmacologic properties should be carefully evaluated when developing drug candidates.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Genes APC/fisiologia , Fator 15 de Diferenciação de Crescimento/fisiologia , Pólipos Intestinais/tratamento farmacológico , Sulindaco/administração & dosagem , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Apoptose/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Humanos , Técnicas Imunoenzimáticas , Pólipos Intestinais/metabolismo , Pólipos Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulindaco/farmacocinética , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA