Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(5): 1572-1581, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38717981

RESUMO

Inside cells, various biological systems work cooperatively for homeostasis and self-replication. These systems do not work independently as they compete for shared elements like ATP and NADH. However, it has been believed that such competition is not a problem in codependent biological systems such as the energy-supplying glycolysis and the energy-consuming translation system. In this study, we biochemically reconstituted the coupling system of glycolysis and translation using purified elements and found that the competition for ATP between glycolysis and protein synthesis interferes with their coupling. Both experiments and simulations revealed that this interference is derived from a metabolic tug-of-war between glycolysis and translation based on their reaction rates, which changes the threshold of the initial substrate concentration for the success coupling. By the metabolic tug-of-war, translation energized by strong glycolysis is facilitated by an exogenous ATPase, which normally inhibits translation. These findings provide chemical insights into the mechanism of competition among biological systems in living cells and provide a framework for the construction of synthetic metabolism in vitro.


Assuntos
Trifosfato de Adenosina , Glicólise , Biossíntese de Proteínas , Trifosfato de Adenosina/metabolismo , NAD/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA