Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 77(2): 675-688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741831

RESUMO

BACKGROUND: Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-ß (Aß), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration. Accumulating evidence suggests that microglia, resident innate immune cells in the central nervous system, play a key role in AD neurodegeneration. OBJECTIVE: Previous work has identified a regulatory role for PS2 in microglia. We hypothesized that PSEN2 variants lead to dysregulated microglia, which could further contribute to disease acceleration. To mimic the genotype of EOFAD patients, we created a transgenic mouse expressing PSEN2 N141I on a mouse background expressing one wildtype PS2 and two PS1 alleles. RESULTS: Microglial expression of PSEN2 N141I resulted in impaired γ-secretase activity as well as exaggerated inflammatory cytokine release, NFκB activity, and Aß internalization. In vivo, PS2 N141I mice showed enhanced IL-6 and TREM2 expression in brain as well as reduced branch number and length, an indication of "activated" morphology, in the absence of inflammatory stimuli. LPS intraperitoneal injection resulted in higher inflammatory gene expression in PS2 N141I mouse brain relative to controls. CONCLUSION: Our findings demonstrate that PSEN2 N141I heterozygosity is associated with disrupted innate immune homeostasis, suggesting EOFAD variants may promote disease progression through non-neuronal cells beyond canonical dysregulated Aß production.


Assuntos
Doença de Alzheimer/genética , Variação Genética/genética , Heterozigoto , Microglia/fisiologia , Fenótipo , Presenilina-2/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia
2.
Biochim Biophys Acta ; 1842(8): 1186-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24412988

RESUMO

The p53 tumor suppressor plays a central role in dictating cell survival and death as a cellular sensor for a myriad of stresses including DNA damage, oxidative and nutritional stress, ischemia and disruption of nucleolar function. Activation of p53-dependent apoptosis leads to mitochondrial apoptotic changes via the intrinsic and extrinsic pathways triggering cell death execution most notably by release of cytochrome c and activation of the caspase cascade. Although it was previously believed that p53 induces apoptotic mitochondrial changes exclusively through transcription-dependent mechanisms, recent studies suggest that p53 also regulates apoptosis via a transcription-independent action at the mitochondria. Recent evidence further suggests that p53 can regulate necrotic cell death and autophagic activity including mitophagy. An increasing number of cytosolic and mitochondrial proteins involved in mitochondrial metabolism and respiration are regulated by p53, which influences mitochondrial ROS production as well. Cellular redox homeostasis is also directly regulated by p53 through modified expression of pro- and anti-oxidant proteins. Proper regulation of mitochondrial size and shape through fission and fusion assures optimal mitochondrial bioenergetic function while enabling adequate mitochondrial transport to accommodate local energy demands unique to neuronal architecture. Abnormal regulation of mitochondrial dynamics has been increasingly implicated in neurodegeneration, where elevated levels of p53 may have a direct contribution as the expression of some fission/fusion proteins are directly regulated by p53. Thus, p53 may have a much wider influence on mitochondrial integrity and function than one would expect from its well-established ability to transcriptionally induce mitochondrial apoptosis. However, much of the evidence demonstrating that p53 can influence mitochondria through nuclear, cytosolic or intra-mitochondrial sites of action has yet to be confirmed in neurons. Nonetheless, as mitochondria are essential for supporting normal neuronal functions and in initiating/propagating cell death signaling, it appears certain that the mitochondria-related functions of p53 will have broader implications than previously thought in acute and progressive neurological conditions, providing new therapeutic targets for treatment.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Autofagia , Humanos , Dinâmica Mitocondrial
3.
J Neurosci ; 33(4): 1357-65, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345212

RESUMO

Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation, and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA-damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred before the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 or parkin expression before CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death.


Assuntos
Dano ao DNA/fisiologia , GTP Fosfo-Hidrolases/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Mitocôndrias/patologia , Proteínas Mitocondriais/biossíntese , Neurônios/patologia , Ubiquitina-Proteína Ligases/biossíntese , Animais , Morte Celular/fisiologia , Células Cultivadas , Dinaminas , Imunofluorescência , GTP Fosfo-Hidrolases/genética , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
Epilepsia ; 53 Suppl 1: 125-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22612817

RESUMO

p53 plays an essential role in mediating apoptotic responses to cellular stress, especially DNA damage. In a kainic acid (KA)-induced seizure model in mice, hippocampal CA1 pyramidal cells undergo delayed neuronal death at day 3-4 following systemic KA administration. We previously demonstrated that CA1 neurons in p53(-/-) animals are protected from such apoptotic neuronal loss. However, extensive morphological damage associated with DNA strand breaks in CA1 neurons was found in a fraction of p53(-/-) animals at earlier time points (8 h to 2 days). No comparable acute damage was observed in wild-type animals. Stereological counting confirmed that there was no significant loss of CA1 pyramidal cells in p53(-/-) animals at 7 days post-KA injection. These results suggest that seizure-induced DNA strand breaks are accumulated to a greater extent but do not lead to apoptosis in the absence of p53. In wild-type animals, therefore, p53 appears to stimulate DNA repair and also mediate apoptosis in CA1 neurons in this excitotoxicity model. These results also reflect remarkable plasticity of neurons in recovery from injury.


Assuntos
Região CA1 Hipocampal/patologia , Dano ao DNA/fisiologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Células Piramidais/patologia , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/efeitos dos fármacos , Contagem de Células , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Knockout , Perfusão , Gravidez , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/patologia
5.
Gynecol Oncol ; 111(3): 523-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18538833

RESUMO

BACKGROUND: In epithelial ovarian cancer (EOC), fertility-sparing surgery (FSS) has mainly been chosen for stage IA disease. The purpose of this study was to clarify the clinical outcome of patients with clear-cell carcinoma of the ovary (CCC) who would usually undergo radical surgery. CASES: After a central pathological review and search of the medical records from multiple institutions between 1988 and 2005, a total of 10 CCC patients treated with FSS were retrospectively evaluated in the current study. The mean age was 35.9 years (range: 32-39 years). The median follow-up time was 35.4 months (range: 21.7-153.2 months). The stage was IA in 4 patients, and IC in 6 patients [IC(b) in 5 patients, and IC(2) in one]. Nine patients received adjuvant chemotherapy. Nine patients were alive and one patient with stage IC(2) died of the disease at a follow-up time of 36.8 months. Five pregnancies were observed in 4 patients. CONCLUSIONS: Although there is no worldwide criterion for FSS in CCC patients at present, it seems that, in selected patients, this surgical approach could be adopted. This should be investigated by additional studies in a larger series.


Assuntos
Adenocarcinoma de Células Claras/cirurgia , Fertilidade , Neoplasias Ovarianas/cirurgia , Adenocarcinoma de Células Claras/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante , Cisplatino/administração & dosagem , Feminino , Seguimentos , Procedimentos Cirúrgicos em Ginecologia/métodos , Humanos , Estadiamento de Neoplasias , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
6.
J Neurosci ; 27(45): 12198-210, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17989286

RESUMO

Recent studies in non-neuronal cells have shown that the tumor suppressor p53 can promote cell death through a transcription-independent mechanism involving its direct action with a subset of Bcl-2 family member proteins in the cytosol and at the mitochondria. In cultured cortical neurons, however, we could not find evidence supporting a significant contribution of the cytosolic/mitochondrial p53 pathway, and available evidence instead corroborated the requirement for the transcriptional activity of p53. When directly targeted to the cytosol/mitochondria, wild-type p53 lost its apoptosis-inducing activity in neurons but not in non-neuronal cells. The N-terminal p53 fragment (transactivation and proline-rich domains), which induces apoptosis in non-neuronal cells via the cytosolic/mitochondrial pathway, displayed no apoptogenic activity in neurons. In neuronal apoptosis induced by camptothecin or an MDM2 (murine double minute 2) inhibitor, nutlin-3, endogenous p53 protein did not accumulate in the cytosol/mitochondria, and transcriptional inhibition after p53 induction effectively blocked cell death. In addition, overexpression of a dominant-negative form of p53 (R273H) completely suppressed induction of proapoptotic p53 target genes and cell death. PUMA (p53-upregulated modulator of apoptosis) was one such gene induced by camptothecin, and its overexpression was sufficient to induce Bax (Bcl-2-associated X protein)-dependent neuronal death, whereas Noxa was not apoptogenic. These results collectively demonstrate that, in contrast to non-neuronal cells, the apoptotic activity of p53 in postnatal cortical neurons does not rely on its direct action at the cytosol/mitochondria but is exclusively mediated through its transcription-dependent functions. The uniqueness of p53-mediated apoptotic signaling in postnatal cortical neurons was further illustrated by the dispensable function of the proline-rich domain of p53.


Assuntos
Apoptose/fisiologia , Citosol/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Ativação Transcricional/fisiologia , Proteína Supressora de Tumor p53/biossíntese , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Camptotecina/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Citosol/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Células NIH 3T3 , Neurônios/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
7.
Proteomics Clin Appl ; 1(11): 1485-98, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21136645

RESUMO

Loss of p53 function is a common event in a variety of human cancers including tumors of glial origin. Using an in vitro mouse model of malignant astrocyte transformation, three cleavable isotope coded affinity tag (cICAT) experiments were performed comparing cultured wild-type astrocytes and two p53(-/-) astrocyte cultures before and after malignant transformation. We identified and quantitated an average of 1366 proteins per experiment and demonstrated that the protein quantitation ratios in each individual cICAT experiment correlated well to ratios determined in the other two studies. These data were further supported by microarray analysis which also correlated to changes in protein expression. The results showed significant changes in protein expression in association with malignant transformation. Proteins overexpressed in malignant astrocytes were typically involved in ribosome biogenesis/protein synthesis and DNA replication, while underexpressed proteins were generally associated with the regulation of cell cycle checkpoint control, tumor suppression, and apoptosis. Among the significantly up-regulated proteins and transcripts in malignant mouse astrocytes were members of the minichromosome maintenance (MCM) family. Western blot analysis verified increased expression of MCM proteins in malignant human astrocytoma cell lines, which had not previously been described. These results demonstrate the usefulness of the cICAT approach for comparing differences in protein expression profiles between normal and malignant cells.

8.
J Biol Chem ; 280(10): 9065-73, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15590665

RESUMO

Bak is generally recognized as a multidomain, pro-apoptotic member of the Bcl-2 family. Bak and Bax are functionally redundant in non-neuronal cells and represent a mitochondrial convergence point for cell death signaling pathways. This functional redundancy, however, may not exist in neurons in which the single deletion of Bax is sufficient to confer protection against a variety of cytotoxic insults. In the present study, we demonstrate that postnatal cortical and cerebellar granule neurons exclusively express an alternatively spliced, BH3 domain-only form of Bak (N-Bak), whereas astrocytes express only the full-length, multidomain form. Overexpression of N-Bak promotes Bax translocation in HeLa cells and induces neuronal cell death in cortical, hippocampal, and cerebellar granule neurons in a Bax-dependent manner. N-Bak interacts with Bcl-XL but not BAX, suggesting an indirect mechanism for promoting Bax translocation to the mitochondria. N-Bak message and protein levels are elevated in cortical neurons in response to DNA damage, and subsequent induction of neuronal death is significantly delayed by expressing a full-length Bak antisense plasmid. These results demonstrate that postnatal neurons solely express a BH3 domain-only form of Bak, which contributes to DNA damage-induced neuronal apoptosis. The absence of full-length Bak expression explains the near exclusive requirement for Bax in neuronal apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Dano ao DNA , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2
9.
J Biol Chem ; 279(25): 26685-97, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15060066

RESUMO

Isotope-coded affinity tag reagents and high throughput mass spectrometry were used to quantitate changes in the expression of 150 proteins in mouse wild-type (p53(+/+)) cortical neurons undergoing DNA damage-induced death. Immunological techniques confirmed several of the changes in protein expression, but microarray analysis indicated that many of these changes were not accompanied by altered mRNA expression. Proteome analysis revealed perturbations in mitochondrial function, free radical production, and neuritogenesis that were not observed in p53-deficient neurons. Changes in Tau, cofilin, and other proteins recapitulated abnormalities observed in neurodegenerative states in vivo. Additionally, DNA damage caused a p53-dependent decrease in expression of members of the protein kinase A (PKA) signaling pathway. PKA inhibition promoted death in the absence of DNA damage, revealing a novel mechanism by which endogenous down-regulation of PKA signaling may contribute to p53-dependent neuronal death. These data demonstrate the power of high throughput mass spectrometry for quantitative analysis of the neuronal proteome.


Assuntos
Apoptose , Dano ao DNA , Espectrometria de Massas/métodos , Neurônios/patologia , Proteômica/métodos , Animais , Western Blotting , Corantes/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Complementar/metabolismo , Regulação para Baixo , Radicais Livres , Genes p53 , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , Peptídeos/química , Faloidina/farmacologia , Proteoma , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção , Proteína Supressora de Tumor p53/metabolismo
10.
Neurochem Res ; 28(1): 15-27, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12587660

RESUMO

The p53 tumor suppressor gene is a sequence-specific transcription factor that activates the expression of genes engaged in promoting growth arrest or cell death in response to multiple forms of cellular stress. p53 expression is elevated in damaged neurons in acute models of injury such as ischemia and epilepsy and in brain tissue samples derived from animal models and patients with chronic neurodegenerative diseases. p53 deficiency or p53 inhibition protects neurons from a wide variety of acute toxic insults. Signal transduction pathways associated with p53-induced neuronal cell death are being characterized, suggesting that intervention may prove effective in maintaining neuronal viability and restoring function following neural injury and disease.


Assuntos
Apoptose/fisiologia , Neurônios/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Animais , Humanos , Neurônios/citologia , Proteína Supressora de Tumor p53/metabolismo
11.
J Neurosci ; 22(12): 4897-905, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12077187

RESUMO

Spinocerebellar ataxia (SCA) type 7 is an inherited neurodegenerative disorder caused by expansion of a polyglutamine tract within the ataxin-7 protein. To determine the molecular basis of polyglutamine neurotoxicity in this and other related disorders, we produced SCA7 transgenic mice that express ataxin-7 with 24 or 92 glutamines in all neurons of the CNS, except for Purkinje cells. Transgenic mice expressing ataxin-7 with 92 glutamines (92Q) developed a dramatic neurological phenotype presenting as a gait ataxia and culminating in premature death. Despite the absence of expression of polyglutamine-expanded ataxin-7 in Purkinje cells, we documented severe Purkinje cell degeneration in 92Q SCA7 transgenic mice. We also detected an N-terminal truncation fragment of ataxin-7 in transgenic mice and in SCA7 patient material with both anti-ataxin-7 and anti-polyglutamine specific antibodies. The appearance of truncated ataxin-7 in nuclear aggregates correlates with the onset of a disease phenotype in the SCA7 mice, suggesting that nuclear localization and proteolytic cleavage may be important features of SCA7 pathogenesis. The non-cell-autonomous nature of the Purkinje cell degeneration in our SCA7 mouse model indicates that polyglutamine-induced dysfunction in adjacent or connecting cell types contributes to the neurodegeneration.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Células de Purkinje/patologia , Degenerações Espinocerebelares/etiologia , Animais , Ataxina-7 , Núcleo Celular/patologia , Marcha Atáxica/etiologia , Marcha Atáxica/metabolismo , Marcha Atáxica/patologia , Corpos de Inclusão/patologia , Cinética , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/fisiologia , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/patologia
12.
Adv Exp Med Biol ; 513: 41-86, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12575817

RESUMO

Neuronal viability is maintained through a complex interacting network of signaling pathways that can be perturbed in response to a multitude of cellular stresses. A shift in the balance of signaling pathways after stress or in response to pathology can have drastic consequences for the function or the fate of a neuron. There is significant evidence that acutely injured and degenerating neurons may die by an active mechanism of cell death. This process involves the activation of discrete signaling pathways that ultimately compromise mitochondrial structure, energy metabolism and nuclear integrity. In this review we examine recent evidence pertaining to the presence and activation of anti- and pro-cell death regulatory pathways in nervous system injury and degeneration.


Assuntos
Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/fisiologia , Calpaína/metabolismo , Inibidores de Caspase , Caspases/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA