Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosurg Rev ; 46(1): 286, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891361

RESUMO

Although frozen section pathology (FSP) is commonly performed during surgery for glioma-suspicious lesions, confounders of accuracy are largely unknown. FSP and final diagnosis were compared in 398 surgeries for glioma-suspicious lesions. Diagnostic accuracy, risk factors for diagnostic shift from neoplastic to non-neoplastic tissue and vice versa according to the final diagnosis, and the impact on intraoperative and postoperative decision-making were analyzed. Diagnostic shift occurred in 70 cases (18%), and sensitivity, specificity, and the positive (PPV) and negative (NPV) predictive value of FSP were 82.5%, 77.8%, 99.4%, and 9.3%, respectively. No correlations between shift and patients' age and sex, sample fluorescence or volume, tumor location, correct information on the pathology form, final high- or low-grade histology, or molecular alterations were found (p > .05, each). Shift was more common after irradiation (25% vs 15%; p = .025) or chemotherapy (26% vs 15%; p = .022) than in treatment naïve cases and correlated with the type of surgery (p = .002). FSP altered intraoperative decision-making in 25 cases (6%). Postoperative shift led to repeated surgery in 12 patients (3%). In 45 cases, in which FSP and final diagnosis based on the same tissue, shift occurred in only 5 patients (11%), and sensitivity, specificity, PPV, and NPV for FSP were 77.4%, 78.6%, 88.9%, and 61.1%, respectively. No correlations between diagnostic shift and any of the analyzed variables were found (p > .05, each). Although accuracy of FSP during glioma surgery is sufficient, moderate NPV should be considered during intraoperative decision-making. While confounders are sparse, accuracy might be increased by repeated sampling. Diagnostic shift rarely alters postoperative treatment strategy.


Assuntos
Secções Congeladas , Glioma , Humanos , Sensibilidade e Especificidade , Glioma/cirurgia , Glioma/diagnóstico , Estudos Retrospectivos
2.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686690

RESUMO

PURPOSE: In meningiomas, TERT promotor mutations are rare but qualify the diagnosis of anaplasia, directly impacting adjuvant therapy. Effective screening for patients at risk for promotor mutations could enable more targeted molecular analyses and improve diagnosis and treatment. METHODS: Semiautomatic segmentation of intracranial grade 2/3 meningiomas was performed on preoperative magnetic resonance imaging. Discriminatory power to predict TERT promoter mutations was analyzed using a random forest algorithm with an increasing number of radiomic features. Two final models with five and eight features with both fixed and differing radiomics features were developed and adjusted to eliminate random effects and to avoid overfitting. RESULTS: A total of 117 image sets including training (N = 94) and test data (N = 23) were analyzed. To eliminate random effects and demonstrate the robustness of our approach, data partitioning and subsequent model development and testing were repeated a total of 100 times (each time with repartitioned training and independent test data). The established five- and eight-feature models with both fixed and different radiomics features enabled the prediction of TERT with similar but excellent performance. The five-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 91.8%/94.3%, mean accuracy of 85.5%/88.9%, mean sensitivity of 88.6%/91.4%, mean specificity of 83.2%/87.0%, and a mean Cohen's Kappa of 71.0%/77.7%. The eight-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 92.7%/94.6%, mean accuracy of 87.3%/88.9%, mean sensitivity of 89.6%/90.6%, mean specificity of 85.5%/87.5%, and a mean Cohen's Kappa of 74.4%/77.6%. Of note, the addition of further features of up to N = 8 only slightly increased the performance. CONCLUSIONS: Radiomics-based machine learning enables prediction of TERT promotor mutation status in meningiomas with excellent discriminatory performance. Future analyses in larger cohorts should include grade 1 lesions as well as additional molecular alterations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA