Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(46): 13898-13906, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544740

RESUMO

PARP16-the sole ER-resident PARP family member-is gaining attention as a potential therapeutic target for cancer treatment. Nevertheless, the precise function of the catalytic activity of PARP16 is poorly understood. This is primarily due to the lack of inhibitors that are selective for PARP16 over other PARP family members. Herein, we describe a structure-guided strategy for generating a selective PARP16 inhibitor by incorporating two selectivity determinants into a phthalazinone pan-PARP inhibitor scaffold: (i) an acrylamide-based inhibitor (DB008) designed to covalently react with a non-conserved cysteine (Cys169, human numbering) in the NAD+ binding pocket of PARP16 and (ii) a dual-purpose ethynyl group designed to bind in a unique hydrophobic cavity adjacent to the NAD+ binding pocket as well as serve as a click handle. DB008 exhibits good selectivity for PARP16 versus other PARP family members. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) confirmed that covalent labeling of PARP16 by DB008 in cells is dependent on Cys169. DB008 exhibits excellent proteome-wide selectivity at concentrations required to achieve saturable labeling of endogenous PARP16. In-cell competition labeling experiments using DB008 provided a facile strategy for evaluating putative PARP16 inhibitors. Lastly, we found that PARP16 is sequestered into a detergent-insoluble fraction under prolonged amino acid starvation, and surprisingly, treatment with PARP16 inhibitors prevented this effect. These results suggest that the catalytic activity of PARP16 regulates its solubility in response to nutrient stress.

2.
Cell Chem Biol ; 29(12): 1694-1708.e10, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493759

RESUMO

Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Regulação Alostérica , NAD/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação
3.
Elife ; 102021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475084

RESUMO

Poly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown. Here, we combine chemical genetics, proximity labeling, and proteome-wide amino acid ADP-ribosylation site profiling for identifying the direct targets and sites of PARP-7-mediated MARylation in a cellular context. We found that the inactive PARP family member, PARP-13-a critical regulator of the antiviral innate immune response-is a major target of PARP-7. PARP-13 is preferentially MARylated on cysteine residues in its RNA binding zinc finger domain. Proteome-wide ADP-ribosylation analysis reveals cysteine as a major MARylation acceptor of PARP-7. This study provides insight into PARP-7 targeting and MARylation site preference.


Assuntos
ADP-Ribosilação , Cisteína/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteoma/genética , Proteínas de Ligação a RNA/genética , Mapeamento Cromossômico , Humanos , Proteínas de Transporte de Nucleosídeos/química , Proteoma/química , Proteínas de Ligação a RNA/química
4.
Nucleic Acids Res ; 47(11): 5658-5669, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216043

RESUMO

ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.


Assuntos
ADP-Ribosilação , Difosfato de Adenosina/química , RNA/metabolismo , ADP Ribose Transferases/genética , Adenosina Difosfato Ribose , Animais , Catálise , Cromatina/química , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/metabolismo , Humanos , Hidrolases/metabolismo , Camundongos , NAD/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Plasmídeos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais
5.
Curr Top Microbiol Immunol ; 420: 211-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30242511

RESUMO

Over the last 60 years, poly-ADP-ribose polymerases (PARPs, 17 family members in humans) have emerged as important regulators of physiology and disease. Small-molecule inhibitors have been essential tools for unraveling PARP function, and recently the first PARP inhibitors have been approved for the treatment of various human cancers. However, inhibitors have only been developed for a few PARPs and in vitro profiling has revealed that many of these exhibit polypharmacology across the PARP family. In this review, we discuss the history, development, and current state of the field, highlighting the limitations and opportunities for PARP inhibitor development.


Assuntos
ADP-Ribosilação/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Desenvolvimento de Medicamentos , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Polifarmacologia
6.
Proc Natl Acad Sci U S A ; 115(44): E10457-E10466, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322911

RESUMO

Alphaviruses are plus-strand RNA viruses that cause encephalitis, rash, and arthritis. The nonstructural protein (nsP) precursor polyprotein is translated from genomic RNA and processed into four nsPs. nsP3 has a highly conserved macrodomain (MD) that binds ADP-ribose (ADPr), which can be conjugated to protein as a posttranslational modification involving transfer of ADPr from NAD+ by poly ADPr polymerases (PARPs). The nsP3MD also removes ADPr from mono ADP-ribosylated (MARylated) substrates. To determine which aspects of alphavirus replication require nsP3MD ADPr-binding and/or hydrolysis function, we studied NSC34 neuronal cells infected with chikungunya virus (CHIKV). Infection induced ADP-ribosylation of cellular proteins without increasing PARP expression, and inhibition of MARylation decreased virus replication. CHIKV with a G32S mutation that reduced ADPr-binding and hydrolase activities was less efficient than WT CHIKV in establishing infection and in producing nsPs, dsRNA, viral RNA, and infectious virus. CHIKV with a Y114A mutation that increased ADPr binding but reduced hydrolase activity, established infection like WT CHIKV, rapidly induced nsP translation, and shut off host protein synthesis with reduced amplification of dsRNA. To assess replicase function independent of virus infection, a transreplicase system was used. Mutant nsP3MDs D10A, G32E, and G112E with no binding or hydrolase activity had no replicase activity, G32S had little, and Y114A was intermediate to WT. Therefore, ADP ribosylation of proteins and nsP3MD ADPr binding are necessary for initiation of alphavirus replication, while hydrolase activity facilitates amplification of replication complexes. These observations are consistent with observed nsP3MD conservation and limited tolerance for mutation.


Assuntos
Vírus Chikungunya/genética , Regulação Viral da Expressão Gênica/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Mutação , Neurônios/virologia , Domínios Proteicos , RNA Viral , Proteínas não Estruturais Virais/genética , Proteínas Virais/metabolismo
7.
Methods Mol Biol ; 1813: 245-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097873

RESUMO

Poly-ADP-ribose polymerases (also known as ADP-ribosyltransferases or ARTDs) are a family of 17 enzymes in humans that catalyze the reversible posttranslational modification known as ADP-ribosylation. PARPs are implicated in diverse cellular processes, from DNA repair to the unfolded protein response. Small-molecule inhibitors of PARPs have improved our understanding of PARP-mediated biology and, in some cases, have emerged as promising treatments for cancers and other human diseases. However these advancements are hindered, in part, by a poor understanding of inhibitor selectivity across the PARP family. Here, we describe a simple, sensitive, and generalizable plate assay to test the potency and selectivity of small molecules against several PARP enzymes in vitro. In principle, this assay can be extended to all active PARPs, providing a convenient and direct comparison of inhibitors across the entire PARP enzyme family.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/química , ADP Ribose Transferases/química , Humanos , NAD/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA