Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 283(51): 35393-401, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18948262

RESUMO

Copper,zinc superoxide dismutase (SOD1) in mammals is activated principally via a copper chaperone (CCS) and to a lesser degree by a CCS-independent pathway of unknown nature. In this study, we have characterized the requirement for CCS in activating SOD1 from Drosophila. A CCS-null mutant (Ccs(n)(29)(E)) of Drosophila was created and found to phenotypically resemble Drosophila SOD1-null mutants in terms of reduced adult life span, hypersensitivity to oxidative stress, and loss of cytosolic aconitase activity. However, the phenotypes of CCS-null flies were less severe, consistent with some CCS-independent activation of Drosophila SOD1 (dSOD1). Yet SOD1 activity was not detectable in Ccs(n)(29)(E) flies, due largely to a striking loss of SOD1 protein. In contrast, human SOD1 expressed in CCS-null flies is robustly active and rescues the deficits in adult life span and sensitivity to oxidative stress. The dependence of dSOD1 on CCS was also observed in a yeast expression system where the dSOD1 polypeptide exhibited unusual instability in CCS-null (ccs1Delta) yeast. The residual dSOD1 polypeptide in ccs1Delta yeast was nevertheless active, consistent with CCS-independent activation. Stability of dSOD1 in ccs1Delta cells was readily restored by expression of either yeast or Drosophila CCS, and this required copper insertion into the enzyme. The yeast expression system also revealed some species specificity for CCS. Yeast SOD1 exhibits preference for yeast CCS over Drosophila CCS, whereas dSOD1 is fully activated with either CCS molecule. Such variation in mechanisms of copper activation of SOD1 could reflect evolutionary responses to unique oxygen and/or copper environments faced by divergent species.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Evolução Molecular , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estabilidade Enzimática/genética , Expressão Gênica , Humanos , Longevidade/genética , Chaperonas Moleculares/genética , Estresse Oxidativo/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Superóxido Dismutase/genética , Superóxido Dismutase-1
2.
J Biol Chem ; 281(27): 18707-14, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16679315

RESUMO

In mammalian cells, iron homeostasis is largely regulated by post-transcriptional control of gene expression through the binding of iron-regulatory proteins (IRP1 and IRP2) to iron-responsive elements (IREs) contained in the untranslated regions of target mRNAs. IRP2 is the dominant iron sensor in mammalian cells under normoxia, but IRP1 is the more ancient protein in evolutionary terms and has an additional function as a cytosolic aconitase. The Caenorhabditis elegans genome does not contain an IRP2 homolog or identifiable IREs; its IRP1 homolog has aconitase activity but does not bind to mammalian IREs. The Drosophila genome offers an evolutionary intermediate containing two IRP1-like proteins (IRP-1A and IRP-1B) and target genes with IREs. Here, we used purified recombinant IRP-1A and IRP-1B from Drosophila melanogaster and showed that only IRP-1A can bind to IREs, although both proteins possess aconitase activity. These results were also corroborated in whole-fly homogenates from transgenic flies that overexpress IRP-1A and IRP-1B in their fat bodies. Ubiquitous and muscle-specific overexpression of IRP-1A, but not of IRP-1B, resulted in pre-adult lethality, underscoring the importance of the biochemical difference between the two proteins. Domain-swap experiments showed that multiple amino acid substitutions scattered throughout the IRP1 domains are synergistically required for conferring IRE binding activity. Our data suggest that as a first step during the evolution of the IRP/IRE system, the ancient cytosolic aconitase was duplicated in insects with one variant acquiring IRE-specific binding.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Animais , Caenorhabditis elegans/genética , Citosol/metabolismo , Proteínas de Drosophila/genética , Genoma , Humanos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
3.
Hum Mol Genet ; 14(22): 3397-405, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16203742

RESUMO

The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe-S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron-sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação ao Ferro/antagonistas & inibidores , Ferro/metabolismo , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Interferência de RNA/fisiologia , Sequência de Aminoácidos , Animais , Tamanho Corporal/genética , Catalase/fisiologia , Citosol/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Inativação Gênica , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1 , Transgenes , Frataxina
4.
J Biol Chem ; 278(48): 47365-9, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-12972424

RESUMO

Iron and oxygen are essential but potentially toxic constituents of most organisms, and their transport is meticulously regulated both at the cellular and systemic levels. Compartmentalization may be a homeostatic mechanism for isolating these biological reactants in cells. To investigate this hypothesis, we have undertaken a genetic analysis of the interaction between iron and oxygen metabolism in Drosophila. We show that Drosophila iron regulatory protein-1 (IRP1) registers cytosolic iron and oxidative stress through its labile iron sulfur cluster by switching between cytosolic aconitase and RNA-binding functions. IRP1 is strongly activated by silencing and genetic mutation of the cytosolic superoxide dismutase (Sod1), but is unaffected by silencing of mitochondrial Sod2. Conversely, mitochondrial aconitase activity is relatively insensitive to loss of Sod1 function, but drops dramatically if Sod2 activity is impaired. This strongly suggests that the mitochondrial boundary limits the range of superoxide reactivity in vivo. We also find that exposure of adults to paraquat converts cytosolic aconitase to IRP1 but has no affect on mitochondrial aconitase, indicating that paraquat generates superoxide in the cytosol but not in mitochondria. Accordingly, we find that transgene-mediated overexpression of Sod2 neither enhances paraquat resistance in Sod1+ flies nor compensates for lack of SOD1 activity in Sod1-null mutants. We conclude that in vivo, superoxide is confined to the subcellular compartment in which it is formed, and that the mitochondrial and cytosolic SODs provide independent protection to compartment-specific protein iron-sulfur clusters against attack by superoxide generated under oxidative stress within those compartments.


Assuntos
Proteínas Ferro-Enxofre/química , Superóxido Dismutase/química , Aconitato Hidratase/química , Animais , Linhagem Celular , Citosol/enzimologia , Citosol/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Drosophila , Herbicidas , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Mitocôndrias/enzimologia , Mutação , Estresse Oxidativo , Oxigênio/metabolismo , Paraquat/farmacologia , Ligação Proteica , RNA/metabolismo , Interferência de RNA , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Superóxidos , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA