Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617885

RESUMO

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Nucleotídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Linhagem Celular , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Modelos Teóricos , Nucleotídeos/metabolismo , RNA Viral , SARS-CoV-2/enzimologia , Processos Estocásticos , Replicação Viral/efeitos dos fármacos
2.
J Biol Chem ; 295(15): 4780-4781, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277065

RESUMO

The nucleotide analogue remdesivir is an investigational drug for the treatment of human coronavirus infection. Remdesivir is a phosphoramidate prodrug and is known to target viral RNA-dependent RNA polymerases. In this issue, Gordon et al. identify that remdesivir acts as a delayed RNA chain terminator for MERS-CoV polymerase complexes.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Coronavirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Coronavirus/fisiologia , Infecções por Coronavirus/virologia , Exonucleases , Humanos , Pandemias , Replicação Viral/efeitos dos fármacos
3.
Cell Host Microbe ; 23(1): 101-109.e4, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29324225

RESUMO

Since their first identification 50 years ago, marburgviruses have emerged several times, with 83%-90% lethality in the largest outbreaks. Although no vaccines or therapeutics are available for human use, the human antibody MR191 provides complete protection in non-human primates when delivered several days after inoculation of a lethal marburgvirus dose. The detailed neutralization mechanism of MR191 remains outstanding. Here we present a 3.2 Å crystal structure of MR191 complexed with a trimeric marburgvirus surface glycoprotein (GP). MR191 neutralizes by occupying the conserved receptor-binding site and competing with the host receptor Niemann-Pick C1. The structure illuminates previously disordered regions of GP including the stalk, fusion loop, CX6CC switch, and an N-terminal region of GP2 that wraps about the outside of GP1 to anchor a marburgvirus-specific "wing" antibody epitope. Virus escape mutations mapped far outside the MR191 receptor-binding site footprint suggest a role for these other regions in the GP quaternary structure.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Marburgvirus/imunologia , Receptores Virais/imunologia , Receptores Virais/ultraestrutura , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Agrobacterium tumefaciens , Animais , Anticorpos Monoclonais/ultraestrutura , Sítios de Ligação/imunologia , Proteínas de Transporte/imunologia , Linhagem Celular , Chlorocebus aethiops , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Marburgvirus/metabolismo , Glicoproteínas de Membrana/imunologia , Proteína C1 de Niemann-Pick , Nicotiana , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Ligação Viral
4.
Curr Top Microbiol Immunol ; 411: 381-417, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28795188

RESUMO

In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.


Assuntos
Filoviridae/química , Filoviridae/metabolismo , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo
5.
Cell Rep ; 12(1): 140-149, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26119732

RESUMO

Ebolavirus NP oligomerizes into helical filaments found at the core of the virion, encapsidates the viral RNA genome, and serves as a scaffold for additional viral proteins within the viral nucleocapsid. We identified a portion of the phosphoprotein homolog VP35 that binds with high affinity to nascent NP and regulates NP assembly and viral genome binding. Removal of the VP35 peptide leads to NP self-assembly via its N-terminal oligomerization arm. NP oligomerization likely causes a conformational change between the NP N- and C-terminal domains, facilitating RNA binding. These functional data are complemented by crystal structures of the NP°-VP35 complex at 2.4 Å resolution. The interactions between NP and VP35 illuminated by these structures are conserved among filoviruses and provide key targets for therapeutic intervention.


Assuntos
Nucleoproteínas/química , Multimerização Proteica , Proteínas do Core Viral/química , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , Nucleoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas do Core Viral/metabolismo
6.
Science ; 338(6114): 1631-4, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23180774

RESUMO

Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/ultraestrutura , RNA Viral/química , RNA Polimerase Dependente de RNA/química , Ribonucleoproteínas/química , Proteínas Virais/química , Replicação Viral , Microscopia Crioeletrônica , Cristalografia por Raios X , Genoma Viral , Processamento de Imagem Assistida por Computador , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Microscopia Eletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Viral/metabolismo , RNA Viral/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/ultraestrutura , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Transcrição Gênica , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/ultraestrutura , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
7.
J Biol Chem ; 286(19): 17351-8, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454495

RESUMO

In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using "quorum sensing," which involves generation and secretion of autoinducing peptides (AIPs) into the surrounding environment to activate a bacterial sensor kinase at a particular threshold concentration. Mouse monoclonal antibody AP4-24H11 was shown previously to blunt quorum sensing-mediated changes in gene expression in vitro and protect mice from a lethal dose of S. aureus by sequestering the AIP signal. We have elucidated the crystal structure of the AP4-24H11 Fab in complex with AIP-4 at 2.5 Å resolution to determine its mechanism of ligand recognition. A key Glu(H95) provides much of the binding specificity through formation of hydrogen bonds with each of the four amide nitrogens in the AIP-4 macrocyclic ring. Importantly, these structural data give clues as to the interactions between the cognate staphylococcal AIP receptors AgrC and the AIPs, as AP4-24H11·AIP-4 binding recapitulates features that have been proposed for AgrC-AIP recognition. Additionally, these structural insights may enable the engineering of AIP cross-reactive antibodies or quorum quenching vaccines for use in active or passive immunotherapy for prevention or treatment of S. aureus infections.


Assuntos
Ligantes , Percepção de Quorum/genética , Staphylococcus aureus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X/métodos , Regulação Bacteriana da Expressão Gênica , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Percepção de Quorum/imunologia , Transdução de Sinais
8.
ACS Chem Biol ; 3(9): 555-66, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18717565

RESUMO

Very little is known about the conformation of polypeptides emerging from the ribosome during protein biosynthesis. Here, we explore the dynamics of ribosome-bound nascent polypeptides and proteins in Escherichia coli by dynamic fluorescence depolarization and assess the population of cotranslationally active chaperones trigger factor (TF) and DnaK. E. coli cell-free technology and fluorophore-linked E. coli Met-tRNA f Met enable selective site-specific labeling of nascent proteins at the N-terminal methionine. For the first time, direct spectroscopic evidence captures the generation of independent nascent chain motions for a single-domain protein emerging from the ribosome (apparent rotational correlation time approximately 5 ns), during the intermediate and late stages of polypeptide elongation. Such motions are detected only for a sequence encoding a globular protein and not for a natively unfolded control, suggesting that the independent nascent chain dynamics may be a signature of folding-competent sequences. In summary, we observe multicomponent, severely rotationally restricted, and strongly chain length/sequence-dependent nascent chain dynamics.


Assuntos
Apoproteínas/biossíntese , Escherichia coli/metabolismo , Mioglobina/biossíntese , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Escherichia coli/fisiologia , Polarização de Fluorescência , Peptidilprolil Isomerase/fisiologia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA