Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2300360120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940324

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introduced a relatively large number of mutations, including three mutations in the highly conserved heptad repeat 1 (HR1) region of the spike glycoprotein (S) critical for its membrane fusion activity. We show that one of these mutations, N969K induces a substantial displacement in the structure of the heptad repeat 2 (HR2) backbone in the HR1HR2 postfusion bundle. Due to this mutation, fusion-entry peptide inhibitors based on the Wuhan strain sequence are less efficacious. Here, we report an Omicron-specific peptide inhibitor designed based on the structure of the Omicron HR1HR2 postfusion bundle. Specifically, we inserted an additional residue in HR2 near the Omicron HR1 K969 residue to better accommodate the N969K mutation and relieve the distortion in the structure of the HR1HR2 postfusion bundle it introduced. The designed inhibitor recovers the loss of inhibition activity of the original longHR2_42 peptide with the Wuhan strain sequence against the Omicron variant in both a cell-cell fusion assay and a vesicular stomatitis virus (VSV)-SARS-CoV-2 chimera infection assay, suggesting that a similar approach could be used to combat future variants. From a mechanistic perspective, our work suggests the interactions in the extended region of HR2 may mediate the initial landing of HR2 onto HR1 during the transition of the S protein from the prehairpin intermediate to the postfusion state.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/metabolismo , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/química , Antirretrovirais
2.
Cell Host Microbe ; 22(5): 688-696.e5, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120745

RESUMO

Arenaviruses cause fatal hemorrhagic disease in humans. Old World arenavirus glycoproteins (GPs) mainly engage α-dystroglycan as a cell-surface receptor, while New World arenaviruses hijack transferrin receptor. However, the Lujo virus (LUJV) GP does not cluster with New or Old World arenaviruses. Using a recombinant vesicular stomatitis virus containing LUJV GP as its sole attachment and fusion protein (VSV-LUJV), we demonstrate that infection is independent of known arenavirus receptor genes. A genome-wide haploid genetic screen identified the transmembrane protein neuropilin 2 (NRP2) and tetraspanin CD63 as factors for LUJV GP-mediated infection. LUJV GP binds the N-terminal domain of NRP2, while CD63 stimulates pH-activated LUJV GP-mediated membrane fusion. Overexpression of NRP2 or its N-terminal domain enhances VSV-LUJV infection, and cells lacking NRP2 are deficient in wild-type LUJV infection. These findings uncover this distinct set of host cell entry factors in LUJV infection and are attractive focus points for therapeutic intervention.


Assuntos
Lujo virus/fisiologia , Neuropilina-2/metabolismo , Tetraspanina 30/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Proteínas de Transporte , Linhagem Celular , Interações Hospedeiro-Patógeno/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lujo virus/genética , Lujo virus/patogenicidade , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina , Proteínas Virais de Fusão/genética , Proteínas Virais/genética
3.
Elife ; 62017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019322

RESUMO

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tomografia com Microscopia Eletrônica , Microscopia de Fluorescência
4.
Nat Biomed Eng ; 1(11): 878-888, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-31015609

RESUMO

Gene disruption by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is highly efficient and relies on the error-prone non-homologous end-joining pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than non-homologous end-joining in mammalian cells. Here, by testing whether manipulation of DNA repair factors improves HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative form of tumour protein p53-binding protein 1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of non-homologous end-joining-mediated double-strand break repair in the presence of these two factors is not suppressed and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity. These findings support the use of RAD52 and dn53BP1 co-expression to overcome bottlenecks that limit HDR in precision genome editing.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Edição de Genes/métodos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Expressão Ectópica do Gene , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reparo de DNA por Recombinação
5.
Cell Rep ; 4(6): 1144-55, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24035393

RESUMO

Removal of introns from pre-messenger RNAs (pre-mRNAs) via splicing provides a versatile means of genetic regulation that is often disrupted in human diseases. To decipher how splicing occurs in real time, we directly examined with single-molecule sensitivity the kinetics of intron excision from pre-mRNA in the nucleus of living human cells. By using two different RNA labeling methods, MS2 and λN, we show that ß-globin introns are transcribed and excised in 20-30 s. Furthermore, we show that replacing the weak polypyrimidine (Py) tract in mouse immunoglobulin µ (IgM) pre-mRNA by a U-rich Py decreases the intron lifetime, thus providing direct evidence that splice-site strength influences splicing kinetics. We also found that RNA polymerase II transcribes at elongation rates ranging between 3 and 6 kb min(-1) and that transcription can be rate limiting for splicing. These results have important implications for a mechanistic understanding of cotranscriptional splicing regulation in the live-cell context.


Assuntos
Íntrons , Splicing de RNA , RNA Mensageiro/genética , Animais , Células HeLa , Humanos , Camundongos , Sítios de Splice de RNA/genética , RNA Mensageiro/metabolismo , Globinas beta/genética
6.
J Virol ; 87(21): 11637-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966407

RESUMO

Rabies virus (RABV) causes a fatal zoonotic encephalitis. Disease symptoms require replication and spread of the virus within neuronal cells; however, in infected animals as well as in cell culture the virus replicates in a broad range of cell types. Here we use a single-cycle RABV and a recombinant vesicular stomatitis virus (rVSV) in which the glycoprotein (G) was replaced with that of RABV (rVSV RABV G) to examine RABV uptake into the African green monkey kidney cell line BS-C-1. Combining biochemical studies and real-time spinning-disk confocal fluorescence microscopy, we show that the predominant entry pathway of RABV particles into BS-C-1 cells is clathrin dependent. Viral particles enter cells in pits with elongated structures and incomplete clathrin coats which depend upon actin to complete the internalization process. By measuring the time of internalization and the abundance of the clathrin adaptor protein AP2, we further show that the pits that internalize RABV particles are similar to those that internalize VSV particles. Pharmacological perturbations of dynamin or of actin polymerization inhibit productive infection, linking our observations on particle uptake with viral infectivity. This work extends to RABV particles the finding that clathrin-mediated endocytosis of rhabdoviruses proceeds through incompletely coated pits which depend upon actin.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Endocitose , Células Epiteliais/virologia , Vírus da Raiva/fisiologia , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops
7.
Cell Stem Cell ; 11(2): 242-52, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862949

RESUMO

The cellular signals controlling the formation of cardiomyocytes, vascular smooth muscle, and endothelial cells from stem cell-derived mesoderm are poorly understood. To identify these signals, a mouse embryonic stem cell (ESC)-based differentiation assay was screened against a small molecule library resulting in a 1,4-dihydropyridine inducer of type II TGF-ß receptor (TGFBR2) degradation-1 (ITD-1). ITD analogs enhanced proteasomal degradation of TGFBR2, effectively clearing the receptor from the cell surface and selectively inhibiting intracellular signaling (IC(50) ~0.4-0.8 µM). ITD-1 was used to evaluate TGF-ß involvement in mesoderm formation and cardiopoietic differentiation, which occur sequentially during early development, revealing an essential role in both processes in ESC cultures. ITD-1 selectively enhanced the differentiation of uncommitted mesoderm to cardiomyocytes, but not to vascular smooth muscle and endothelial cells. ITD-1 is a highly selective TGF-ß inhibitor and reveals an unexpected role for TGF-ß signaling in controlling cardiomyocyte differentiation from multipotent cardiovascular precursors.


Assuntos
Di-Hidropiridinas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Di-Hidropiridinas/química , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator de Crescimento Epidérmico/deficiência , Fator de Crescimento Epidérmico/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Peso Molecular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Relação Estrutura-Atividade
8.
Nat Struct Mol Biol ; 18(3): 295-301, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278753

RESUMO

Heat shock cognate protein-70 (Hsc70) supports remodeling of protein complexes, such as disassembly of clathrin coats on endocytic coated vesicles. To understand how a simple ATP-driven molecular clamp catalyzes a large-scale disassembly reaction, we have used single-particle fluorescence imaging to track the dynamics of Hsc70 and its clathrin substrate in real time. Hsc70 accumulates to a critical level, determined by kinetic modeling to be one Hsc70 for every two functional attachment sites; rapid, all-or-none uncoating then ensues. We propose that Hsc70 traps conformational distortions, seen previously by cryo-EM, in the vicinity of each occupied site and that accumulation of local strains destabilizes the clathrin lattice. Capture of conformational fluctuations may be a general mechanism for chaperone-driven disassembly of protein complexes.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Auxilinas/metabolismo , Sítios de Ligação , Bovinos , Clatrina/química , Clatrina/genética , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/genética , Escherichia coli/genética , Fluorescência , Expressão Gênica , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Insetos/citologia , Cinética , Modelos Moleculares , Mutação , Ratos
9.
Structure ; 18(9): 1191-8, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826345

RESUMO

Auxilin, a J-domain containing protein, recruits the Hsc70 uncoating ATPase to newly budded clathrin-coated vesicles. The timing of auxilin arrival determines that uncoating will commence only after the clathrin lattice has fully assembled and after membrane fission is complete. Auxilin has a region resembling PTEN, a PI3P phosphatase. We have determined the crystal structure of this region of bovine auxilin 1; it indeed resembles PTEN closely. A change in the structure of the P loop accounts for the lack of phosphatase activity. Inclusion of phosphatidylinositol phosphates substantially enhances liposome binding by wild-type auxilin, but not by various mutants bearing changes in loops of the C2 domain. Nearly all these mutations also prevent recruitment of auxilin to newly budded coated vesicles. We propose a specific geometry for auxilin association with a membrane bilayer and discuss implications of this model for the mechanism by which auxilin detects separation of a vesicle from its parent membrane.


Assuntos
Auxilinas/química , Vesículas Revestidas por Clatrina/metabolismo , PTEN Fosfo-Hidrolase/química , Animais , Auxilinas/metabolismo , Células Cultivadas , Vesículas Revestidas por Clatrina/ultraestrutura , Cristalografia por Raios X , Haplorrinos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Terciária de Proteína , Ratos
10.
PLoS One ; 5(7): e10944, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20668539

RESUMO

Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport to the endoplasmic reticulum and toxicity but also activates signaling through the tyrosine kinase Syk. We previously described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx. Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment with Stx results in an increase in the number of clathrin-coated profiles as determined by electron microscopy and on the number of structures containing the endocytic AP-2 adaptor at the plasma membrane determined by live-cell spinning disk confocal imaging. These responses to Stx require functional Syk activity. We propose that a signaling pathway mediated by Syk and modulated by Stx leads to an increased number of endocytic clathrin-coated structures, thus providing a possible mechanism by which Stx enhances its own endocytosis.


Assuntos
Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Invaginações Revestidas da Membrana Celular/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Toxina Shiga/farmacologia , Complexo 2 de Proteínas Adaptadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Células HeLa , Humanos , Microscopia Eletrônica , Quinase Syk
11.
Cancer Res ; 68(21): 8899-907, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18974134

RESUMO

Anaplastic large cell lymphoma (ALCL) is a non-Hodgkin's lymphoma that originates from T cells and frequently expresses oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. The proliferation and survival of ALCL cells are determined by the ALK activity. Here we show that the kinase activity of the nucleophosmin (NPM)-ALK fusion regulated the shape of ALCL cells and F-actin filament assembly in a pattern similar to T-cell receptor-stimulated cells. NPM-ALK formed a complex with the guanine exchange factor VAV1, enhancing its activation through phosphorylation. VAV1 increased Cdc42 activity, and in turn, Cdc42 regulated the shape and migration of ALCL cells. In vitro knockdown of VAV1 or Cdc42 by short hairpin RNA, as well as pharmacologic inhibition of Cdc42 activity by secramine, resulted in a cell cycle arrest and apoptosis of ALCL cells. Importantly, the concomitant inhibition of Cdc42 and NPM-ALK kinase acted synergistically to induce apoptosis of ALCL cells. Finally, Cdc42 was necessary for the growth as well as for the maintenance of already established lymphomas in vivo. Thus, our data open perspectives for new therapeutic strategies by revealing a mechanism of regulation of ALCL cell growth through Cdc42.


Assuntos
Divisão Celular , Forma Celular , Linfoma Anaplásico de Células Grandes/patologia , Proteínas Tirosina Quinases/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ativação Enzimática , Imunofluorescência , Humanos , Linfoma Anaplásico de Células Grandes/enzimologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptores Proteína Tirosina Quinases
12.
Mol Biol Cell ; 18(7): 2646-55, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17494868

RESUMO

Phosphatidylinositol 4 phosphate (PI4P) is highly enriched in the trans-Golgi network (TGN). Here we establish that PI4P is a key regulator of the recruitment of the GGA clathrin adaptor proteins to the TGN and that PI4P has a novel role in promoting their recognition of the ubiquitin (Ub) sorting signal. Knockdown of PI4KIIalpha by RNA interference (RNAi), which depletes the TGN's PI4P, impaired the recruitment of the GGAs to the TGN. GGAs bind PI4P primarily through their GAT domain, in a region called C-GAT, which also binds Ub but not Arf1. We identified two basic residues in the GAT domain that are essential for PI4P binding in vitro and for the recruitment of GGAs to the TGN in vivo. Unlike wild-type GGA, GGA with mutated GATs failed to rescue the abnormal TGN phenotype of the GGA RNAi-depleted cells. These residues partially overlap with those that bind Ub, and PI4P increased the affinity of the GAT domain for Ub. Because the recruitment of clathrin adaptors and their cargoes to the TGN is mediated through a web of low-affinity interactions, our results show that the dual roles of PI4P can promote specific GGA targeting and cargo recognition at the TGN.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Rede trans-Golgi/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/química , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Sítios de Ligação , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico
13.
J Biol Chem ; 282(13): 9805-9812, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17261583

RESUMO

To reach the lysosomes, down-regulated receptors such as the epidermal growth factor receptor must first be sorted into internal vesicles of late endosomes (multivesicular bodies), a ubiquitin-dependent event that requires the coordinated function of the endosome sorting complex required for transport (ESCRT) proteins. Here we report that CHMP3, an ESCRT-III complex component, and associated molecule of SH3 domain of STAM (AMSH), a deubiquitinating enzyme, interact with each other in cells. A dominant-negative version of CHMP3, which specifically prevents targeting of AMSH to endosomes, inhibits degradation but not internalization of EGFR, suggesting that endosomal AMSH is a functional component of the multivesicular body pathway.


Assuntos
Endossomos/enzimologia , Receptores ErbB/metabolismo , Ubiquitina Tiolesterase/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
14.
Proc Natl Acad Sci U S A ; 103(27): 10265-10270, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16798879

RESUMO

Clathrin-coated pits assemble on a membrane and pinch off as coated vesicles. The released vesicles then rapidly lose their clathrin coats in a process mediated by the ATPase Hsc70, recruited by auxilin, a J-domain-containing cofactor. How is the uncoating process regulated? We find that during coat assembly small and variable amounts of auxilin are recruited transiently but that a much larger burst of association occurs after the peak of dynamin signal, during the transition between membrane constriction and vesicle budding. We show that the auxilin burst depends on domains of the protein likely to interact with lipid head groups. We conclude that the timing of auxilin recruitment determines the onset of uncoating. We propose that, when a diffusion barrier is established at the constricting neck of a fully formed coated pit and immediately after vesicle budding, accumulation of a specific lipid can recruit sufficient auxilin molecules to trigger uncoating.


Assuntos
Auxilinas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Animais , Auxilinas/genética , Bovinos , Linhagem Celular , Membrana Celular/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo
15.
Biochem Pharmacol ; 71(12): 1720-6, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16677615

RESUMO

Cyclic AMP- (cAMP) and calcium-dependent agonists stimulate chloride secretion through the coordinated activation of distinct apical and basolateral membrane channels and ion transporters in mucosal epithelial cells. Defects in the regulation of Cl- transport across mucosal surfaces occur with cystic fibrosis and V. cholerae infection and can be life threatening. Here we report that secramine B, a small molecule that inhibits activation of the Rho GTPase Cdc42, reduced cAMP-stimulated chloride secretion in the human intestinal cell line T84. Secramine B interfered with a cAMP-gated and Ba2+-sensitive K+ channel, presumably KCNQ1/KCNE3. This channel is required to maintain the membrane potential that sustains chloride secretion. In contrast, secramine B did not affect the Ca2+-mediated chloride secretion pathway, which requires a separate K+ channel activity from that of cAMP. Pirl1, another small molecule structurally unrelated to secramine B that also inhibits Cdc42 activation in vitro, similarly inhibited cAMP-dependent but not Ca2+-dependent chloride secretion. These results suggest that Rho GTPases may be involved in the regulation of the chloride secretory response and identify secramine B an inhibitor of cAMP-dependent K+ conductance in intestinal epithelial cells.


Assuntos
Benzazepinas/farmacologia , AMP Cíclico/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Potássio/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Linhagem Celular , AMP Cíclico/antagonistas & inibidores , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Ativação do Canal Iônico , Transporte de Íons
17.
Exp Cell Res ; 306(1): 142-9, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15878340

RESUMO

Tubules and vesicles are membrane carriers involved in traffic along the endocytic and secretory routes. The small GTPase Arf6 regulates a recycling branch of short dynamic tubular intermediates used by major histocompatibility class I (MHC-I) molecules to traffic through vesicles between endosomes and the plasma membrane. We observed that Arf6 also affects a second network of very long and stable tubules containing MHC-I, many of which correspond to deep invaginations of the plasma membrane. Treatment with wortmannin, an inhibitor of phosphatidylinositol-3-phosphate kinase, prevents formation of the short dynamic tubules while increasing the number of the long and very stable ones. Expression of NefAAAA, a mutant form of HIV Nef, increases the number of cells containing the stable tubules, and is used here as a tool to facilitate their study. Photoactivation of NefAAAA-PA-GFP demonstrates that this molecule traffics from endosomes to the tubules. Finally, live-cell imaging also shows internalization of MHC-I molecules into these tubules, suggesting that this is an additional route for MHC-I traffic.


Assuntos
Linhagem Celular Tumoral , Estruturas da Membrana Celular/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Androstadienos/farmacologia , Estruturas da Membrana Celular/efeitos dos fármacos , Estruturas da Membrana Celular/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Produtos do Gene nef/análise , Produtos do Gene nef/genética , Produtos do Gene nef/metabolismo , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Microscopia Eletrônica , Modelos Biológicos , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/fisiologia , Transdução Genética , Transfecção , Wortmanina
18.
Traffic ; 5(7): 478-92, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15180825

RESUMO

Chemical genetics seeks to identify small molecules that afford functional dissection of cell biological pathways. Previous screens for small molecule inhibitors of exocytic membrane traffic yielded the identification and characterization of several compounds that block traffic from the Golgi to the cell surface as well as transport from the endoplasmic reticulum to the Golgi network [Feng et al. Proc Natl Acad Sci USA 2003;100:6469-6474; Yarrow et al. Comb Chem High Throughput Screen 2003;6:279-286; Feng et al. EMBO Reports 2004: in press]. Here, we screened these inhibitors for potential effects on endocytic membrane traffic. Two structurally related sulfonamides were found to be potent and reversible inhibitors of transferrin-mediated iron uptake. These inhibitors do not block endoplasmic reticulum-to-Golgi transport, but do disrupt Golgi-to-cell surface traffic. The compounds are members of a novel class of sulfonamides that elevate endosomal and lysosomal pH, down-regulate cell surface receptors, and impair recycling of internalized transferrin receptors to the plasma membrane. In vitro experiments revealed that the sulfonamides directly inhibit adenosine triphosphate (ATP) hydrolysis by the V-ATPase and that they also possess a potent proton ionophore activity. While maintenance of organellar pH is known to be a critical factor in both endocytosis and exocytosis, the precise role of acidification, beyond the uncoupling of ligands from their receptors, remains largely unknown. Identification of this novel class of sulfonamide inhibitors provides new chemical tools to better understand the function of organelle pH in membrane traffic and the activity of V-ATPases in particular.


Assuntos
Membrana Celular/metabolismo , Técnicas Genéticas , Sulfonamidas/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Animais , Corantes/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Células Epiteliais , Exocitose , Complexo de Golgi/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Ionóforos/farmacologia , Ferro/química , Ferro/metabolismo , Células K562 , Cinética , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Modelos Químicos , Prótons , Receptores de LDL/biossíntese , Sulfonamidas/metabolismo , Transferrina/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas do Envelope Viral/metabolismo , beta-Galactosidase/metabolismo
19.
Mol Biol Cell ; 15(1): 323-31, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14617802

RESUMO

HIV Nef has a number of important biological effects, including the down-modulation of several immunological important molecules (CD4, major histocompatibility complex [MHC] class I). Down-modulation of CD4 seems to be via clathrin-dependent endocytosis, whereas down-modulation of MHC class I remains unexplained. Several mutant proteins, including mutations in the small GTPase Arf6, have been used to probe membrane traffic pathways. One such mutant has recently been used to propose that Nef acts through Arf6 to activate the endocytosis of MHC class I. Here, we show that MHC class I down-modulation is unaffected by other Arf6 mutants that provide more specific perturbations in the GDP-GTP cycling of Arf6. Inhibition of phosphatidylinositol-3-phosphate kinase, an upstream activator of Arf6, also had no effect on the internalization step, but its activity is required to direct MHC class I to the trans-Golgi network. We conclude that the apparent Arf6 dependency of Nef-mediated MHC class I down-modulation is due to nonspecific perturbations in membrane traffic.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Clatrina/metabolismo , Genes MHC Classe I/fisiologia , Genes nef/fisiologia , HIV/metabolismo , Fator 6 de Ribosilação do ADP , Células Cultivadas , Clonagem Molecular , Regulação para Baixo/fisiologia , Endocitose/fisiologia , Ativação Enzimática/fisiologia , Citometria de Fluxo , Complexo de Golgi/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Células Jurkat , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/fisiologia
20.
J Virol ; 77(24): 13361-75, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645591

RESUMO

Cell entry by reoviruses requires a large, transcriptionally active subvirion particle to gain access to the cytoplasm. The features of this particle have been the subject of debate, but three primary candidates-the infectious subvirion particle (ISVP), ISVP*, and core particle forms-that differ in whether putative membrane penetration protein micro 1 and adhesin sigma1 remain particle bound have been identified. Experiments with antibody reagents in this study yielded new information about the steps in particle disassembly during cell entry. Monoclonal antibodies specific for the delta region of micro 1 provided evidence for a conformational change in micro 1 and for release of the delta proteolytic fragment from entering particles. Antiserum raised against cores provided evidence for entry-related changes in particle structure and identified entering particles that largely lack the delta fragment inside cells. Antibodies specific for sigma1 showed that it is also largely shed from entering particles. Limited coimmunostaining with markers for late endosomes and lysosomes indicated the particles lacking delta and sigma1 did not localize to those subcellular compartments, and other observations suggested that both the particles and free delta were released into the cytoplasm. Essentially equivalent findings were obtained with native ISVPs and highly infectious recoated particles containing wild-type proteins. Poorly infectious recoated particles containing a hyperstable mutant form of micro 1, however, showed no evidence for the in vitro and intracellular changes in particle structure normally detected by antibodies, and these particles instead accumulated in late endosomes or lysosomes. Recoated particles with hyperstable micro 1 were also ineffective at mediating erythrocyte lysis in vitro and promoting alpha-sarcin coentry and intoxication of cells in cultures. Based on these and other findings, we propose that ISVP* is a transient intermediate in cell entry which mediates membrane penetration and is then further uncoated in the cytoplasm to yield particles, resembling cores, that largely lack the delta fragment of micro 1.


Assuntos
Proteínas do Capsídeo/química , Conformação Proteica , Reoviridae/patogenicidade , Vírion/química , Animais , Imunofluorescência , Células L , Camundongos , Testes de Precipitina , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA