Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38556760

RESUMO

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
2.
Res Sq ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645935

RESUMO

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify. Novel therapeutic targets are often hard-to-drug proteins, such as messengers or transcription factors. Computational strategies arise as a promising solution to expedite drug discovery for unconventional therapeutic targets. FRASE-bot exploits big data and machine learning (ML) to distill 3D information relevant to the target protein from thousands of protein-ligand complexes to seed it with ligand fragments. The seeded fragments can then inform either (i) de novo design of 3D ligand structures or (ii) ultra-large-scale virtual screening of commercially available compounds. Here, FRASE-bot was applied to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising but ligand-orphan drug target implicated in triple negative breast cancer. The signaling function of CIB1 relies on protein-protein interactions and its structure does not feature any natural ligand-binding pocket. FRASE-based virtual screening identified the first small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depleted cells.

3.
ACS Chem Biol ; 18(3): 494-507, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36877831

RESUMO

Bivalent chemical degraders, otherwise known as proteolysis-targeting chimeras (PROTACs), have proven to be an efficient strategy for targeting overexpressed or mutated proteins in cancer. PROTACs provide an alternative approach to small-molecule inhibitors, which are restricted by occupancy-driven pharmacology, often resulting in acquired inhibitor resistance via compensatory increases in protein expression. Despite the advantages of bivalent chemical degraders, they often have suboptimal physicochemical properties and optimization for efficient degradation remains highly unpredictable. Herein, we report the development of a potent EED-targeted PRC2 degrader, UNC7700. UNC7700 contains a unique cis-cyclobutane linker and potently degrades PRC2 components EED (DC50 = 111 nM; Dmax = 84%), EZH2WT/EZH2Y641N (DC50 = 275 nM; Dmax = 86%), and to a lesser extent SUZ12 (Dmax = 44%) after 24 h in a diffuse large B-cell lymphoma DB cell line. Characterization of UNC7700 and related compounds for ternary complex formation and cellular permeability to provide a rationale for the observed improvement in degradation efficiency remained challenging. Importantly, UNC7700 dramatically reduces H3K27me3 levels and is anti-proliferative in DB cells (EC50 = 0.79 ± 0.53 µM).


Assuntos
Neoplasias , Complexo Repressor Polycomb 2 , Humanos , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise
4.
SLAS Discov ; 28(1): 39-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563789

RESUMO

Mutations in the small GTPase protein KRAS are one of the leading drivers of cancers including lung, pancreatic, and colorectal, as well as a group of developmental disorders termed "Rasopathies". Recent breakthroughs in the development of mutant-specific KRAS inhibitors include the FDA approved drug Lumakras (Sotorasib, AMG510) for KRAS G12C-mutated non-small cell lung cancer (NSCLC), and MRTX1133, a promising clinical candidate for the treatment of KRAS G12D-mutated cancers. However, there are currently no FDA approved inhibitors that target KRAS mutations occurring at non-codon 12 positions. Herein, we focused on the KRAS mutant A146T, found in colorectal cancers, that exhibits a "fast-cycling" nucleotide mechanism as a driver for oncogenic activation. We developed a novel high throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay that leverages the reduced nucleotide affinity of KRAS A146T. As designed, the assay is capable of detecting small molecules that act to allosterically modulate GDP affinity or directly compete with the bound nucleotide. A pilot screen was completed to demonstrate robust statistics and reproducibility followed by a primary screen using a diversity library totaling over 83,000 compounds. Compounds yielding >50% inhibition of TR-FRET signal were selected as hits for testing in dose-response format. The most promising hit, UNC10104889, was further investigated through a structure activity relationship (SAR)-by-catalog approach in an attempt to improve potency and circumvent solubility liabilities. Overall, we present the TR-FRET platform as a robust assay to screen fast-cycling KRAS mutants enabling future discovery efforts for novel chemical probes and drug candidates.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transferência Ressonante de Energia de Fluorescência , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos Testes , Nucleotídeos
5.
Eur J Med Chem ; 246: 114980, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495630

RESUMO

DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.


Assuntos
Bibliotecas de Moléculas Pequenas , Tanquirases , Bibliotecas de Moléculas Pequenas/química , Farmacóforo , Tanquirases/metabolismo , Ligantes , Reprodutibilidade dos Testes , DNA/metabolismo
6.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708914

RESUMO

Acquired resistance is inevitable in non-small cell lung cancers (NSCLCs) treated with osimertinib (OSI), and the mechanisms are not well defined. The MERTK ligand GAS6 promoted downstream oncogenic signaling in EGFR-mutated (EGFRMT) NSCLC cells treated with OSI, suggesting a role for MERTK activation in OSI resistance. Indeed, treatment with MRX-2843, a first-in-class MERTK kinase inhibitor, resensitized GAS6-treated NSCLC cells to OSI. Both GAS6 and EGF stimulated downstream PI3K/AKT and MAPK/ERK signaling in parental cells, but only GAS6 activated these pathways in OSI-resistant (OSIR) derivative cell lines. Functionally, OSIR cells were more sensitive to MRX-2843 than parental cells, suggesting acquired dependence on MERTK signaling. Furthermore, MERTK and/or its ligands were dramatically upregulated in EGFRMT tumors after treatment with OSI in both xenograft models and patient samples, consistent with induction of autocrine/paracrine MERTK activation. Moreover, treatment with MRX-2843 in combination with OSI, but not OSI alone, provided durable suppression of tumor growth in vivo, even after treatment was stopped. These data identify MERTK as a driver of bypass signaling in treatment-naive and EGFRMT-OSIR NSCLC cells and predict that MRX-2843 and OSI combination therapy will provide clinical benefit in patients with EGFRMT NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas , c-Mer Tirosina Quinase/genética
7.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
8.
Cell Chem Biol ; 29(4): 555-571.e11, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34715055

RESUMO

Canonical targeting of Polycomb repressive complex 1 (PRC1) to repress developmental genes is mediated by cell-type-specific, paralogous chromobox (CBX) proteins (CBX2, 4, 6, 7, and 8). Based on their central role in silencing and their dysregulation associated with human disease including cancer, CBX proteins are attractive targets for small-molecule chemical probe development. Here, we have used a quantitative and target-specific cellular assay to discover a potent positive allosteric modulator (PAM) of CBX8. The PAM activity of UNC7040 antagonizes H3K27me3 binding by CBX8 while increasing interactions with nucleic acids. We show that treatment with UNC7040 leads to efficient and selective eviction of CBX8-containing PRC1 from chromatin, loss of silencing, and reduced proliferation across different cancer cell lines. Our discovery and characterization of UNC7040 not only reveals the most cellularly potent CBX8-specific chemical probe to date, but also corroborates a mechanism of Polycomb regulation by non-specific CBX nucleotide binding activity.


Assuntos
Neoplasias , Complexo Repressor Polycomb 1 , Proteínas de Ciclo Celular/metabolismo , Cromatina , Histonas/metabolismo , Humanos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica
9.
ACS Med Chem Lett ; 12(11): 1832-1839, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795874

RESUMO

Calcium and integrin binding protein 1 (CIB1) is a small, intracellular protein recently implicated in survival and proliferation of triple-negative breast cancer (TNBC). Considering its interactions with PAK1 and downstream signaling, CIB1 has been suggested as a potential therapeutic target in TNBC. As such, CIB1 has been the focus of inhibitor discovery efforts. To overcome issues of potency and stability in previously reported CIB1 inhibitors, we deploy mRNA display to discover new cyclic peptide inhibitors with improved biophysical properties and cellular activity. We advance UNC10245131, a cyclic peptide with low nanomolar affinity and good selectivity for CIB1 over other EF-hand domain proteins and improved permeability and stability over previously identified linear peptide inhibitor UNC10245092. Unlike UNC10245092, UNC10245131 lacks cytotoxicity and does not affect downstream signaling. Despite this, UNC10245131 is a potent ligand that could aid in clarifying roles of CIB1 in TNBC survival and proliferation and other CIB1-associated biological phenotypes.

10.
Eur J Med Chem ; 220: 113534, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038857

RESUMO

Inhibition of MER receptor tyrosine kinase (MERTK) causes direct tumor cell killing and stimulation of the innate immune response. Therefore, MERTK has been identified as a therapeutic target in a wide variety of human tumors. Clinical trials targeting MERTK have recently been initiated, however, none of these drugs are MERTK-specific. Herein, we present the discovery of a highly MERTK-selective inhibitor UNC5293 (24). UNC5293 has subnanomolar activity against MERTK with an excellent Ambit selectivity score (S50 (100 nM) = 0.041). It mediated potent and selective inhibition of MERTK in cell-based assays. Furthermore, it has excellent mouse PK properties (7.8 h half-life and 58% oral bioavailability) and was active in bone marrow leukemia cells in a murine model.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , c-Mer Tirosina Quinase/antagonistas & inibidores , Administração Oral , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , c-Mer Tirosina Quinase/metabolismo
11.
Bioorg Med Chem Lett ; 30(19): 127464, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768646

RESUMO

Two critical steps in drug development are 1) the discovery of molecules that have the desired effects on a target, and 2) the optimization of such molecules into lead compounds with the required potency and pharmacokinetic properties for translation. DNA-encoded chemical libraries (DECLs) can nowadays yield hits with unprecedented ease, and lead-optimization is becoming the limiting step. Here we integrate DECL screening with structure-based computational methods to streamline the development of lead compounds. The presented workflow consists of enumerating a virtual combinatorial library (VCL) derived from a DECL screening hit and using computational binding prediction to identify molecules with enhanced properties relative to the original DECL hit. As proof-of-concept demonstration, we applied this approach to identify an inhibitor of PARP10 that is more potent and druglike than the original DECL screening hit.


Assuntos
DNA/química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Técnicas de Química Combinatória , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Humanos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo
12.
J Am Chem Soc ; 141(39): 15700-15709, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31497954

RESUMO

Controlling which particular members of a large protein family are targeted by a drug is key to achieving a desired therapeutic response. In this study, we report a rational data-driven strategy for achieving restricted polypharmacology in the design of antitumor agents selectively targeting the TYRO3, AXL, and MERTK (TAM) family tyrosine kinases. Our computational approach, based on the concept of fragments in structural environments (FRASE), distills relevant chemical information from structural and chemogenomic databases to assemble a three-dimensional inhibitor structure directly in the protein pocket. Target engagement by the inhibitors designed led to disruption of oncogenic phenotypes as demonstrated in enzymatic assays and in a panel of cancer cell lines, including acute lymphoblastic and myeloid leukemia (ALL/AML) and nonsmall cell lung cancer (NSCLC). Structural rationale underlying the approach was corroborated by X-ray crystallography. The lead compound demonstrated potent target inhibition in a pharmacodynamic study in leukemic mice.


Assuntos
Antineoplásicos/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais
13.
Sci Rep ; 9(1): 6524, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024026

RESUMO

Many common disease-causing mutations result in loss-of-function (LOF) of the proteins in which they occur. LOF mutations have proven recalcitrant to pharmacologic intervention, presenting a challenge for the development of targeted therapeutics. Polycomb repressive complex 2 (PRC2), which contains core subunits (EZH2, EED, and SUZ12), regulates gene activity by trimethylation of histone 3 lysine 27. The dysregulation of PRC2 catalytic activity by mutations has been implicated in cancer and other diseases. Among the mutations that cause PRC2 malfunction, an I363M LOF mutation of EED has been identified in myeloid disorders, where it prevents allosteric activation of EZH2 catalysis. We describe structure-based design and computational simulations of ligands created to ameliorate this LOF. Notably, these compounds selectively stimulate the catalytic activity of PRC2-EED-I363M over wildtype-PRC2. Overall, this work demonstrates the feasibility of developing targeted therapeutics for PRC2-EED-I363M that act as allosteric agonists, potentially correcting this LOF mutant phenotype.


Assuntos
Descoberta de Drogas , Mutação/genética , Complexo Repressor Polycomb 2/genética , Regulação Alostérica , Linhagem Celular , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Peptidomiméticos/síntese química , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Especificidade por Substrato
14.
Structure ; 27(6): 1022-1028.e2, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30956131

RESUMO

Processing of substrates by enzymes can only be fully understood through their conformational dynamics; this is particularly true for the diphosphoinositol pentakisphosphate kinase PPIP5K2, an enzyme with critical roles in cell signaling and bioenergetic homeostasis. PPIP5K2 is remarkable for the reversible nature of its kinase activity, its unique ligand-stimulated ATPase activity, and the substrate traveling between two ligand-binding sites. Here we use molecular dynamics and data analysis techniques to rationalize these PPIP5K2 activities, thereby increasing our understanding of complex enzymatic mechanisms. In particular, we demonstrate how the enzyme's distinctive, ratchet-like mechanism harnesses the energy of random fluctuations to significantly reduce the entropy toll for intramolecular substrate transfer. We show that pre-reaction pulling forces along the reaction coordinate are predictive of the various PPIP5K2 catalytic activities. An unexpected possibility, raised by these computational studies, that 3,5-IP8 might be a substrate for dephosphorylation was experimentally interrogated and confirmed in a luciferase assay.


Assuntos
Adenosina Trifosfatases/metabolismo , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Ligantes , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Conformação Proteica , Especificidade por Substrato , Termodinâmica
15.
J Med Chem ; 61(22): 10242-10254, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347155

RESUMO

Although all kinases share the same ATP binding pocket, subtle differences in the residues that form the pocket differentiate individual kinases' affinity for ATP competitive inhibitors. We have found that by introducing a single methyl group, the selectivity of our MERTK inhibitors over another target, FLT3, was increased up to 1000-fold (compound 31). Compound 19 was identified as an in vivo tool compound with subnanomolar activity against MERTK and 38-fold selectivity over FLT3 in vitro. The potency and selectivity of 19 for MERTK over FLT3 were confirmed in cell-based assays using human cancer cell lines. Compound 19 had favorable pharmacokinetic properties in mice. Phosphorylation of MERTK was decreased by 75% in bone marrow leukemia cells from mice treated with 19 compared to vehicle-treated mice.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Metilação , Camundongos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Distribuição Tecidual , c-Mer Tirosina Quinase/química , c-Mer Tirosina Quinase/metabolismo
16.
SLAS Discov ; 23(9): 982-988, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29842835

RESUMO

Inositol hexakisphosphate kinases (IP6Ks) regulate a myriad of cellular processes, not only through their catalytic activity (which synthesizes InsP7, a multifunctional inositol pyrophosphate signaling molecule) but also through protein-protein interactions. To further study the enzymatic function and distinguish between these different mechanisms, specific inhibitors that target IP6K catalytic activity are required. Only one IP6K inhibitor is commonly used: N2-( m-(trifluoromethyl)benzyl) N6-( p-nitrobenzyl)purine (TNP). TNP is, however, compromised by weak potency, inability to distinguish between IP6K isoenzymes, off-target activities, and poor pharmacokinetic properties. Herein, we describe a new inhibitor discovery strategy, based on the high degree of structural conservation of the nucleotide-binding sites of IP6Ks and protein kinases; we screened for novel IP6K2 inhibitors using a focused set of compounds with features known, or computationally predicted, to target nucleotide binding by protein kinases. We developed a time-resolved fluorescence resonance energy transfer (TR-FRET) assay of adenosine diphosphate (ADP) formation from adenosine triphosphate (ATP). Novel hit compounds for IP6K2 were identified and validated with dose-response curves and an orthogonal assay. None of these inhibitors affected another inositol pyrophosphate kinase, PPIP5K. Our screening strategy offers multiple IP6K2 inhibitors for future development and optimization. This approach will be applicable to inhibitor discovery campaigns for other inositol phosphate kinases.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Proteínas Quinases/química , Relação Estrutura-Atividade
17.
SLAS Discov ; 23(8): 850-861, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29742358

RESUMO

Continuous exposure of a pancreatic cancer cell line MIA PaCa-2 (MiaS) to gemcitabine resulted in the formation of a gemcitabine-resistant subline (MiaR). In an effort to discover kinase inhibitors that inhibited MiaR growth, MiaR cells were exposed to kinase inhibitors (PKIS-1 library) in a 384-well screening format. Three compounds (UNC10112721A, UNC10112652A, and UNC10112793A) were identified that inhibited the growth of MiaR cells by more than 50% (at 50 nM). Two compounds (UNC10112721A and UNC10112652A) were classified as cyclin-dependent kinase (CDK) inhibitors, whereas UNC10112793A was reported to be a PLK inhibitor. Dose-response experiments supported the efficacy of these compounds to inhibit growth and increase apoptosis in 2D cultures of these cells. However, only UNC10112721A significantly inhibited the growth of 3D spheroids composed of MiaR cells and GFP-tagged cancer-associated fibroblasts. Multiplexed inhibitor bead (MIB)-mass spectrometry (MS) kinome competition experiments identified CDK9, CLK1-4, DYRK1A, and CSNK1 as major kinase targets for UNC10112721A in MiaR cells. Another CDK9 inhibitor (CDK-IN-2) replicated the growth inhibitory effects of UNC10112721A, whereas inhibitors against the CLK, DYRK, or CSNK1 kinases had no effect. In summary, these studies describe a coordinated approach to discover novel kinase inhibitors, evaluate their efficacy in 3D models, and define their specificity against the kinome.


Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Conformação Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Fluxo de Trabalho , Gencitabina
18.
ChemMedChem ; 12(3): 207-213, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032464

RESUMO

Macrocycles have attracted significant attention in drug discovery recently. In fact, a few de novo designed macrocyclic kinase inhibitors are currently in clinical trials with good potency and selectivity for their intended target. In this study, we successfully engaged a structure-based drug design approach to discover macrocyclic pyrimidines as potent Mer tyrosine kinase (MerTK)-specific inhibitors. An enzyme-linked immunosorbent assay (ELISA) in 384-well format was employed to evaluate the inhibitory activity of macrocycles in a cell-based assay assessing tyrosine phosphorylation of MerTK. Through structure-activity relationship (SAR) studies, analogue 11 [UNC2541; (S)-7-amino-N-(4-fluorobenzyl)-8-oxo-2,9,16-triaza-1(2,4)-pyrimidinacyclohexadecaphane-1-carboxamide] was identified as a potent and MerTK-specific inhibitor that exhibits sub-micromolar inhibitory activity in the cell-based ELISA. In addition, an X-ray structure of MerTK protein in complex with 11 was resolved to show that these macrocycles bind in the MerTK ATP pocket.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Compostos Macrocíclicos/química , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Pirimidinas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , c-Mer Tirosina Quinase
19.
ACS Med Chem Lett ; 7(12): 1044-1049, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994735

RESUMO

Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

20.
PLoS One ; 11(10): e0164378, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736936

RESUMO

Pharmacological tools-'chemical probes'-that intervene in cell signaling cascades are important for complementing genetically-based experimental approaches. Probe development frequently begins with a high-throughput screen (HTS) of a chemical library. Herein, we describe the design, validation, and implementation of the first HTS-compatible strategy against any inositol phosphate kinase. Our target enzyme, PPIP5K, synthesizes 'high-energy' inositol pyrophosphates (PP-InsPs), which regulate cell function at the interface between cellular energy metabolism and signal transduction. We optimized a time-resolved, fluorescence resonance energy transfer ADP-assay to record PPIP5K-catalyzed, ATP-driven phosphorylation of 5-InsP7 to 1,5-InsP8 in 384-well format (Z' = 0.82 ± 0.06). We screened a library of 4745 compounds, all anticipated to be membrane-permeant, which are known-or conjectured based on their structures-to target the nucleotide binding site of protein kinases. At a screening concentration of 13 µM, fifteen compounds inhibited PPIP5K >50%. The potency of nine of these hits was confirmed by dose-response analyses. Three of these molecules were selected from different structural clusters for analysis of binding to PPIP5K, using isothermal calorimetry. Acceptable thermograms were obtained for two compounds, UNC10112646 (Kd = 7.30 ± 0.03 µM) and UNC10225498 (Kd = 1.37 ± 0.03 µM). These Kd values lie within the 1-10 µM range generally recognized as suitable for further probe development. In silico docking data rationalizes the difference in affinities. HPLC analysis confirmed that UNC10225498 and UNC10112646 directly inhibit PPIP5K-catalyzed phosphorylation of 5-InsP7 to 1,5-InsP8; kinetic experiments showed inhibition to be competitive with ATP. No other biological activity has previously been ascribed to either UNC10225498 or UNC10112646; moreover, at 10 µM, neither compound inhibits IP6K2, a structurally-unrelated PP-InsP kinase. Our screening strategy may be generally applicable to inhibitor discovery campaigns for other inositol phosphate kinases.


Assuntos
Inibidores Enzimáticos/química , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Biocatálise , Calorimetria , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Fosfatos de Inositol/metabolismo , Cinética , Simulação de Acoplamento Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA