Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 108(2): 116137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134822

RESUMO

Sarcina ventriculi, also known as Zymosarcina ventriculi and, incorrectly, as Clostridium ventriculi, is rarely encountered in clinical settings. A patient with a complicated gastrointestinal (GI) history, who was acutely presenting with small-bowel obstruction, was found to be colonized by S. ventriculi. The distinctive morphology of this species, with large Gram-variable cocci (up to 3 µm) arranged in two-by-two cuboid clusters reaching up to 20 µm, was key in identifying this bacterium in a stomach biopsy specimen. Sarcina ventriculi appears to be ubiquitously found in nature, and related bacterial species can cause GI-related disease in various animals. Clinical manifestations in humans are broad and often related to other underlying comorbidities. Isolation of S. ventriculi in the laboratory requires anaerobic culture on select media but its absence from standard MALDI-TOF databases complicates identification. Susceptibility data do not exist, so empiric treatment is the only option for this rare pathogen.


Assuntos
Sarcina , Estômago , Feminino , Humanos , Idoso de 80 Anos ou mais , Clostridium
2.
PLoS One ; 11(7): e0159281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415779

RESUMO

In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.


Assuntos
Macaca fascicularis/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Animais , Cercocebus atys/virologia , Modelos Animais de Doenças , Genoma Viral/genética , Macaca nemestrina/virologia , Filogenia
3.
Oncotarget ; 6(37): 39969-79, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26544511

RESUMO

APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Desaminase APOBEC-3G , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citidina Desaminase/genética , Dano ao DNA , Produtos do Gene vif/genética , Células HEK293 , Humanos , Immunoblotting , Macaca mulatta/virologia , Antígenos de Histocompatibilidade Menor , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Vírus da Imunodeficiência Símia/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
4.
PLoS Pathog ; 9(5): e1003352, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675300

RESUMO

Retroviral capsid recognition by Trim5 blocks productive infection. Rhesus macaques harbor three functionally distinct Trim5 alleles: Trim5α(Q) , Trim5α(TFP) and Trim5(CypA) . Despite the high degree of amino acid identity between Trim5α(Q) and Trim5α(TFP) alleles, the Q/TFP polymorphism results in the differential restriction of some primate lentiviruses, suggesting these alleles differ in how they engage these capsids. Simian immunodeficiency virus of rhesus macaques (SIVmac) evolved to resist all three alleles. Thus, SIVmac provides a unique opportunity to study a virus in the context of the Trim5 repertoire that drove its evolution in vivo. We exploited the evolved rhesus Trim5α resistance of this capsid to identify gain-of-sensitivity mutations that distinguish targets between the Trim5α(Q) and Trim5α(TFP) alleles. While both alleles recognize the capsid surface, Trim5α(Q) and Trim5α(TFP) alleles differed in their ability to restrict a panel of capsid chimeras and single amino acid substitutions. When mapped onto the structure of the SIVmac239 capsid N-terminal domain, single amino acid substitutions affecting both alleles mapped to the ß-hairpin. Given that none of the substitutions affected Trim5α(Q) alone, and the fact that the ß-hairpin is conserved among retroviral capsids, we propose that the ß-hairpin is a molecular pattern widely exploited by Trim5α proteins. Mutations specifically affecting rhesus Trim5α(TFP) (without affecting Trim5α(Q) ) surround a site of conservation unique to primate lentiviruses, overlapping the CPSF6 binding site. We believe targeting this site is an evolutionary innovation driven specifically by the emergence of primate lentiviruses in Africa during the last 12 million years. This modularity in targeting may be a general feature of Trim5 evolution, permitting different regions of the PRYSPRY domain to evolve independent interactions with capsid.


Assuntos
Evolução Biológica , Mutação , Proteínas/genética , Vírus da Imunodeficiência Símia/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Capsídeo/imunologia , Gatos , Linhagem Celular , HIV/genética , Humanos , Macaca mulatta , Dados de Sequência Molecular , Polimorfismo Genético , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA