Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(1): 209-224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710629

RESUMO

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiose/genética , RNA Mensageiro/genética , RNA não Traduzido/genética
2.
BMC Med Genomics ; 12(1): 112, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351478

RESUMO

BACKGROUND: Synthetic lethal interactions (SLIs) that occur between gene pairs are exploited for cancer therapeutics. Studies in the model eukaryote yeast have identified ~ 550,000 negative genetic interactions that have been extensively studied, leading to characterization of novel pathways and gene functions. This resource can be used to predict SLIs that can be relevant to cancer therapeutics. METHODS: We used patient data to identify genes that are down-regulated in breast cancer. InParanoid orthology mapping was performed to identify yeast orthologs of the down-regulated genes and predict their corresponding SLIs in humans. The predicted network graphs were drawn with Cytoscape. CancerRXgene database was used to predict drug response. RESULTS: Harnessing the vast available knowledge of yeast genetics, we generated a Humanized Yeast Genetic Interaction Network (HYGIN) for 1009 human genes with 10,419 interactions. Through the addition of patient-data from The Cancer Genome Atlas (TCGA), we generated a breast cancer specific subnetwork. Specifically, by comparing 1009 genes in HYGIN to genes that were down-regulated in breast cancer, we identified 15 breast cancer genes with 130 potential SLIs. Interestingly, 32 of the 130 predicted SLIs occurred with FBXW7, a well-known tumor suppressor that functions as a substrate-recognition protein within a SKP/CUL1/F-Box ubiquitin ligase complex for proteasome degradation. Efforts to validate these SLIs using chemical genetic data predicted that patients with loss of FBXW7 may respond to treatment with drugs like Selumitinib or Cabozantinib. CONCLUSIONS: This study provides a patient-data driven interpretation of yeast SLI data. HYGIN represents a novel strategy to uncover therapeutically relevant cancer drug targets and the yeast SLI data offers a major opportunity to mine these interactions.


Assuntos
Neoplasias da Mama/genética , Epistasia Genética , Proteína 7 com Repetições F-Box-WD/genética , Leveduras/genética , Redes Reguladoras de Genes , Humanos
3.
Oncogene ; 37(30): 4073-4093, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700392

RESUMO

Triple-negative breast cancer (TNBC) tumours that lack expression of oestrogen, and progesterone receptors, and do not overexpress the HER2 receptor represent the most aggressive breast cancer subtype, which is characterised by the resistance to therapy in frequently relapsing tumours and a high rate of patient mortality. This is likely due to the resistance of slowly proliferating tumour-initiating cells (TICs), and understanding molecular mechanisms that control TICs behaviour is crucial for the development of effective therapeutic approaches. Here, we present our novel findings, indicating that an intrinsically catalytically inactive member of the Eph group of receptor tyrosine kinases, EPHB6, partially suppresses the epithelial-mesenchymal transition in TNBC cells, while also promoting expansion of TICs. Our work reveals that EPHB6 interacts with the GRB2 adapter protein and that its effect on enhancing cell proliferation is mediated by the activation of the RAS-ERK pathway, which allows it to elevate the expression of the TIC-related transcription factor, OCT4. Consistent with this, suppression of either ERK or OCT4 activities blocks EPHB6-induced pro-proliferative responses. In line with its ability to trigger propagation of TICs, EPHB6 accelerates tumour growth, potentiates tumour initiation and increases TIC populations in xenograft models of TNBC. Remarkably, EPHB6 also suppresses tumour drug resistance to DNA-damaging therapy, probably by forcing TICs into a more proliferative, drug-sensitive state. In agreement, patients with higher EPHB6 expression in their tumours have a better chance for recurrence-free survival. These observations describe an entirely new mechanism that governs TNBC and suggest that it may be beneficial to enhance EPHB6 action concurrent with applying a conventional DNA-damaging treatment, as it would decrease drug resistance and improve tumour elimination.


Assuntos
Receptores da Família Eph/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Dano ao DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas ras/metabolismo
4.
Genome Announc ; 6(2)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326211

RESUMO

Deinococcus sp. strain UR1, a resilient bacterium isolated from the surface of a stainless steel sign located on the University of Regina campus in Saskatchewan, Canada, was sequenced to 56-fold coverage to produce 73 contigs with a consensus length of 4,472,838 bp and a G+C content of 69.37%.

5.
Genome Announc ; 1(5)2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24179115

RESUMO

Pantoea agglomerans is an enteric bacterium that is capable of causing both plant and human disease. Here, we report the genome sequence of a cystic fibrosis isolate, P. agglomerans Tx10, which produces an antibiotic that is effective against Staphylococcus aureus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA