RESUMO
INTRODUCTION: Around 21.6-35% of military personnel are smokers, while 12.26% of them have been regularly exposed to second-hand smoke (SHS). Second-hand smoke is considered an important risk factor for neurological diseases because it can induce oxidative stress, DNA damage, and disrupt DNA repair pathways. MATERIAL AND METHODS: The brain of air (sham) or SHS exposed mice was cryoperserved, sectioned, and placed on a glass slide before immunoprobing them with antibodies to observe for oxidative DNA damage (8-oxoG), oxidative DNA repair (8-oxoguanine DNA glycosylase 1, Ogg1; apurinic/apyrimidinic endonuclease, Ape1), and inflammatory (glial fibrillary acidic protein) proteins. RESULTS: Nissl staining of the prefrontal cortex (PFCTX) revealed the presence of dark, shrunken cells, hippocampal thinning, and the presence of activated astrocytes in SHS exposed mice. 8-oxoG staining was also more prominent in the PFCTX and hippocampus (HIPP) of SHS exposed mice. Ogg1 staining was reduced in the PFCTX and CA3 hippocampal neurons of SHS exposed mice, whereas it was more prominent in CA1 and CA4 hippocampal neurons. In contrast, Ape1 staining was more prominent in the PFCTX and the HIPP of SHS exposed mice. CONCLUSIONS: These studies demonstrate that oxidative DNA damage (8-oxoG) was elevated and oxidative DNA repair (Ape1 and Ogg1) was altered in the brain of SHS exposed mice. In addition, activated astrocytes (i.e., glial fibrillary acidic protein) were also observed in the brain of SHS exposed mice. Therefore, SHS induces both oxidative DNA damage and repair as well as inflammation as possible underlying mechanism(s) of the cognitive decline and metabolic changes that were observed in chronically exposed mice. A better understanding of how chronic exposure to SHS induces cognitive dysfunction among military personnel could help improve the combat readiness of U.S. soldiers as well as reduce the financial burden on the DOD and veterans' families.
Assuntos
Doenças do Sistema Nervoso , Poluição por Fumaça de Tabaco , Humanos , Camundongos , Animais , Poluição por Fumaça de Tabaco/efeitos adversos , Proteína Glial Fibrilar Ácida , Reparo do DNA , Estresse Oxidativo/genética , Dano ao DNARESUMO
Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.
Assuntos
Microbioma Gastrointestinal , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Humanos , Animais , Camundongos , Lactente , Poluição por Fumaça de Tabaco/efeitos adversos , Estresse Oxidativo , Cognição , Dano ao DNARESUMO
MGMT, the gene coding for the DNA-repair protein O6 -methylguanine methyltransferase, which has been recently shown to be a risk factor for inherited forms of Alzheimer's disease (AD), notably among women, might also be linked to Western Pacific amyotrophic lateral sclerosis and Parkinsonism-dementia complex (ALS/PDC), one phenotype of which is an AD-like dementia. Guam ALS/PDC is strongly considered to be an environmental disorder caused by oral exposure to natural toxins (i.e., genotoxic/epigenotoxic chemicals), notably methylazoxymethanol (MAM) that alkylates guanine to form O6 -methylguanine, found in the seed of cycad plants traditionally used for food. Thus, the DNA-repair protein MGMT might participate in both AD and in the AD-related disorder ALS/PDC.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Transtornos Parkinsonianos , Feminino , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA/genética , Transtornos Parkinsonianos/epidemiologia , Transtornos Parkinsonianos/genética , Fatores de Risco , Proteínas Supressoras de TumorRESUMO
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
RESUMO
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Assuntos
Carcinógenos/toxicidade , Hidrazinas/toxicidade , Neoplasias/etiologia , Doenças Neurodegenerativas/etiologia , Neurotoxinas/toxicidade , Animais , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Fígado/efeitos dos fármacos , Neoplasias/complicações , Neoplasias/genética , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismoRESUMO
BACKGROUND: Exposure to secondhand smoke (SHS) is a risk factor for developing sporadic forms of sporadic dementia. A human tau (htau) mouse model is available that exhibits age-dependent tau dysregulation, neurofibrillary tangles, neuronal loss, neuroinflammation, and oxidative stress starting at an early age (3-4 months) and in which tau dysregulation and neuronal loss correlate with synaptic dysfunction and cognitive decline. OBJECTIVE: The goal of this study was to assess the effects of chronic SHS exposure (10 months' exposure to â¼30 mg/m3) on behavioral and cognitive function, metabolism, and neuropathology in mice. METHODS: Wild-type (WT) and htau female and male mice were exposed to SHS (90% side stream, 10% main stream) using the SCIREQ® inExpose™ system or air control for 168 min per day, for 312 d, 7 d per week. The exposures continued during the days of behavioral and cognitive testing. In addition to behavioral and cognitive performance and neuropathology, the lungs of mice were examined for pathology and alterations in gene expression. RESULTS: Mice exposed to chronic SHS exposure showed the following genotype-dependent responses: a) lower body weights in WT, but not htau, mice; b) less spontaneous alternation in WT, but not htau, mice in the Y maze; c) faster swim speeds of WT, but not htau, mice in the water maze; d) lower activity levels of WT and htau mice in the open field; e) lower expression of brain PHF1, TTCM1, IGF1ß, and HSP90 protein levels in WT male, but not female, mice; and f) more profound effects on hippocampal metabolic pathways in WT male than female mice and more profound effects in WT than htau mice. DISCUSSION: The brain of WT mice, in particular WT male mice, might be especially susceptible to the effects of chronic SHS exposure. In WT males, independent pathways involving ascorbate, flavin adenine dinucleotide, or palmitoleic acid might contribute to the hippocampal injury following chronic SHS exposure. https://doi.org/10.1289/EHP8428.
Assuntos
Exposição Ambiental , Hipocampo , Poluição por Fumaça de Tabaco , Animais , Cognição , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos , Tauopatias , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/estatística & dados numéricos , Proteínas tauRESUMO
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid ß-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/epidemiologia , Animais , Guam , Humanos , Indonésia , Japão , MutagênicosRESUMO
Pathological changes of the aging brain are expressed in a range of neurodegenerative disorders that will impact increasing numbers of people across the globe. Research on the causes of these disorders has focused heavily on genetics, and strategies for prevention envision drug-induced slowing or arresting disease advance before its clinical appearance. We discuss a strategic shift that seeks to identify the environmental causes or contributions to neurodegeneration, and the vision of primary disease prevention by removing or controlling exposure to culpable agents. The plausibility of this approach is illustrated by the prototypical neurodegenerative disease amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC). This often-familial long-latency disease, once thought to be an inherited genetic disorder but now known to have a predominant or exclusive environmental origin, is in the process of disappearing from the three heavily affected populations, namely Chamorros of Guam and Rota, Japanese residents of Kii Peninsula, Honshu, and Auyu and Jaqai linguistic groups on the island of New Guinea in West Papua, Indonesia. Exposure via traditional food and/or medicine (the only common exposure in all three geographic isolates) to one or more neurotoxins in seed of cycad plants is the most plausible if yet unproven etiology. Neurotoxin dosage and/or subject age at exposure might explain the stratified epidemic of neurodegenerative disease on Guam in which high-incidence ALS peaked and declined before that of PD, only to be replaced today by a dementing disorder comparable to Alzheimer's disease. Exposure to the Guam environment is also linked to the delayed development of ALS among a subset of Chamorro and non-Chamorro Gulf War/Era veterans, a summary of which is reported here for the first time. Lessons learned from this study and from 65 years of research on ALS-PDC include the exceptional value of initial, field-based informal investigation of disease-affected individuals and communities, the results of which can provide an invaluable guide to steer cogent epidemiological and laboratory-based research.
Assuntos
Exposição Ambiental/efeitos adversos , Doenças Neurodegenerativas , Prevenção Primária , Idoso , Idoso de 80 Anos ou mais , Exposição Ambiental/estatística & dados numéricos , Feminino , Guam/epidemiologia , Humanos , Masculino , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controleRESUMO
Recognition of overlapping molecular signaling activated by a chemical trigger of cancer and neurodegeneration is new, but the path to this discovery has been long and potholed. Six conferences (1962-1972) examined the puzzling neurotoxic and carcinogenic properties of a then-novel toxin [cycasin: methylazoxymethanol (MAM)-ß-d-glucoside] in cycad plants used traditionally for food and medicine on Guam where a complex neurodegenerative disease plagued the indigenous population. Affected families showed combinations of amyotrophic lateral sclerosis (ALS), parkinsonism (P), and/or a dementia (D) akin to Alzheimer's disease (AD). Modernization saw declining disease rates on Guam and remarkable changes in clinical phenotype (ALS was replaced by P-D and then by D) and in two genetically distinct ALS-PDC-affected populations (Kii-Japan, West Papua-Indonesia) that used cycad seed medicinally. MAM forms DNA lesions - repaired by O(6)-methylguanine methyltransferase (MGMT) - that perturb mouse brain development and induce malignant tumors in peripheral organs. The brains of young adult MGMT-deficient mice given a single dose of MAM show DNA lesion-linked changes in cell-signaling pathways associated with miRNA-1, which is implicated in colon, liver, and prostate cancers, and in neurological disease, notably AD. MAM is metabolized to formaldehyde, a human carcinogen. Formaldehyde-responsive miRNAs predicted to modulate MAM-associated genes in the brains of MGMT-deficient mice include miR-17-5p and miR-18d, which regulate genes involved in tumor suppression, DNA repair, amyloid deposition, and neurotransmission. These findings marry cycad-associated ALS-PDC with colon, liver, and prostate cancer; they also add to evidence linking changes in microRNA status both to ALS, AD, and parkinsonism, and to cancer initiation and progression.
RESUMO
Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O6-methyldeoxyguanosine lesions, O6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O6-mG DNA methyltransferase (MGMT) showed elevated O6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease.
Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , Dano ao DNA , Acetato de Metilazoximetanol/análogos & derivados , Mutagênicos/toxicidade , Doenças Neurodegenerativas/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Cycadopsida/química , Metilases de Modificação do DNA/deficiência , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Acetato de Metilazoximetanol/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismoRESUMO
The prenatal and perinatal periods of brain development are especially vulnerable to insults by environmental agents. Early life exposure to cigarette smoke (CS), which contains both genotoxicants and oxidants, is considered an important risk factor for both neurodevelopmental and neurodegenerative disorders. Yet, little is known regarding the underlying pathogenetic mechanisms. In the present study, neonatal Swiss ICR (CD-1) albino mice were exposed to various concentrations of CS for 4 weeks and the brain examined for lipid peroxides, DNA damage, base-excision repair (BER) enzymes, apoptosis, and levels of the microtubule protein tau. CS induced a dose-dependent increase in both malondialdehyde and various types of DNA damage, including single-strand breaks, double-strand breaks, and DNA-protein cross-links. However, the CS-induced DNA damage in the brain returned to basal levels 1 week after smoking cessation. CS also modulated the activity and distribution of the BER enzymes 8-oxoguanine-DNA-glycosylase (OGG1) and apyrimidinic/apurinic endonuclease (APE1) in several brain regions. Normal tau (i.e., three-repeat tau, 3R tau) and various pathological forms of tau were also measured in the brain of CS-exposed neonatal mice, but only 3R tau and tau phosphorylated at serine 199 were significantly elevated. The oxidative stress, genomic dysregulation, and alterations in tau metabolism caused by CS during a critical period of brain development could explain why CS is an important risk factor for both neurodevelopmental and neurodegenerative disorders appearing in later life.
Assuntos
Encéfalo/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Nicotiana , Fumaça/efeitos adversos , Proteínas tau/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Exposição por Inalação , Peroxidação de Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacosRESUMO
Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC), a prototypical neurodegenerative disease (tauopathy) affecting distinct genetic groups with common exposure to neurotoxic chemicals in cycad seed, has many features of Parkinson's and Alzheimer's diseases (AD), including early olfactory dysfunction. Guam ALS-PDC incidence correlates with cycad flour content of cycasin and its aglycone methylazoxymethanol (MAM), which produces persistent DNA damage (O(6)-methylguanine) in the brains of mice lacking O(6)-methylguanine methyltransferase (Mgmt(-/-)). We described in Mgmt(-/-)mice up to 7 days post-MAM treatment that brain DNA damage was linked to brain gene expression changes found in human neurological disease, cancer, and skin and hair development. This addendum reports 6 months post-MAM treatment- related brain transcriptional changes as well as elevated mitogen activated protein kinases and increased caspase-3 activity, both of which are involved in tau aggregation and neurofibrillary tangle formation typical of ALS-PDC and AD, plus transcriptional changes in olfactory receptors. Does cycasin act as a "slow (geno)toxin" in ALS-PDC?
RESUMO
Buccal cells are becoming a widely used tissue source for monitoring human exposure to occupational and environmental genotoxicants. A variety of methods exist for collecting buccal cells from the oral cavity, including rinsing with saline, mouthwash, or scraping the oral cavity. Buccal cells are also routinely cryopreserved with dimethyl sulfoxide (DMSO), then examined later for DNA damage by the comet assay. The effects of these different sampling procedures on the integrity of buccal cells for measuring DNA damage are unknown. This study examined the influence of the collection and cryopreservation of buccal cells on cell survival and DNA integrity. In individuals who rinsed with Hank's balanced salt solution (HBSS), the viability of leukocytes (90%) was significantly (p<0.01) greater than that of epithelial cells (12%). Similar survival rates were found for leukocytes (88%) and epithelial cells (10%) after rinsing with Listerine(®) mouthwash. However, the viability of leukocytes after cryopreservation varied significantly (p<0.01) with DMSO concentration. Cell survival was greatest at 5% DMSO. Cryopreservation also influenced the integrity of DNA in the comet assay. Although tail length and tail moment were comparable in fresh or cryopreserved samples, the average head intensity for cryopreserved samples was â¼6 units lower (95% CI: 0.8-12 units lower) than for fresh samples (t(25)=-2.36, p=0.026). These studies suggest that the collection and storage of buccal samples are critical factors for the assessment of DNA damage. Moreover, leukocytes appear to be a more reliable source of human tissue for assessing DNA damage and possibly other biochemical changes.
Assuntos
Agricultura , Bochecha , Dano ao DNA , Mucosa Bucal , Exposição Ocupacional , Manejo de Espécimes , Adolescente , Adulto , Sobrevivência Celular , Ensaio Cometa , Criopreservação , Dimetil Sulfóxido , Células Epiteliais , Feminino , Humanos , Leucócitos , MasculinoRESUMO
Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A pilot study of pesticide applicators and farm workers working in the fruit orchards of Oregon (i.e., apples, pears) was conducted to examine the relationship between organophosphate (OP) pesticide exposure and oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay) and serum analyzed for lipid peroxides (i.e., malondialdehyde [MDA]). Cellular DNA damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farm workers and applicators (p < .001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farm workers and applicators, respectively, than in controls. Serum MDA levels were 4.9 times and 24 times higher in farm workers and applicators, respectively, than in controls. DNA damage and oxidative DNA repair were significantly greater in lymphocytes from applicators and farm workers when compared with controls. A separate field study showed that DNA damage was also significantly greater (p < .001) in buccal cells (i.e., leukocytes) collected from migrant farm workers working with fungicides in the berry crops in Oregon. Markers of oxidative stress (i.e., reactive oxygen species, reduced levels of glutathione) and oxidative DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and cancer.
Assuntos
Agricultura , Dano ao DNA , Exposição Ocupacional/efeitos adversos , Organofosfatos/sangue , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Biomarcadores/sangue , Estudos de Casos e Controles , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Humanos , Oregon , Organofosfatos/urina , Projetos Piloto , Espécies Reativas de Oxigênio , Inquéritos e QuestionáriosRESUMO
In the last decade, the Comet assay has been used increasingly in studies of workers potentially exposed to genotoxic substances in the workplace or environment. Significant increases in DNA damage measured with the Comet assay has been reported in lymphocytes of agricultural workers; however, less intrusive means of biomonitoring are needed in epidemiological investigations. This study was designed to use the Comet assay to describe the association of markers of DNA damage in oral leukocytes with biomarkers of pesticide exposure in 134 farmworkers working in berry crops in Oregon compared to control populations. The authors also examined the extent of DNA damage in young workers compared to adults and the effect of work histories, lifestyle factors, and diet on markers of DNA damage. Urinary levels of organophosphate pesticides were low at the time of sampling; however, mean levels of the Captan metabolite tetrahydrophthalimide (THPI) were found to be shifted significantly higher in the farmworkers (0.14 microg/ml) compared to controls (0.078 microg/ml) (one-sided p value=.01). Likewise, the combined molar equivalent of all dialkylphosphate metabolites was marginally higher in farmworkers (p value=.05). The mean tail intensity was significantly greater for agricultural workers compared to controls (one-sided p value<.001), indicating more DNA damage in the oral leukocytes. On average, the mean tail intensity was 10.9 units greater for agricultural workers (95% CI: 6-16 units greater). Tail moment was also significantly greater for agricultural workers compared to nonagricultural workers (one-sided p value<.001). No Comet parameter was significantly associated with years spent working in agriculture, age, sex, body mass index, diet, and alcohol or tobacco use. The results of this study demonstrate the feasibility for using the Comet assay in biomonitoring studies of farmworkers. Additional studies are needed to examine the effects of different pesticide types on DNA damage and to capture the temporal relationship between exposure to agricultural chemicals and changes in Comet parameters.