Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 150(8): 611-621, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38666382

RESUMO

BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca fascicularis , Infarto do Miocárdio , Miócitos Cardíacos , Esferoides Celulares , Animais , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Miócitos Cardíacos/transplante , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Esferoides Celulares/transplante , Regeneração , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Masculino , Transplante de Células-Tronco/métodos , Modelos Animais de Doenças
2.
JACC Case Rep ; 29(5): 102221, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38464796

RESUMO

A 24-year-old woman with chronic active Epstein-Barr virus (CAEBV) infection successfully underwent coronary artery bypass grafting for triple coronary arteries with chronic total occlusion and aneurysms. This case underscores the importance of accurate assessment and treatment of coronary artery lesions in patients with CAEBV infection.

3.
J Mol Cell Cardiol ; 187: 90-100, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331557

RESUMO

Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Humanos , Diferenciação Celular , Miocárdio , Miócitos Cardíacos/transplante , Insuficiência Cardíaca/terapia
4.
J Card Fail ; 29(4): 503-513, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37059512

RESUMO

Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Humanos , Insuficiência Cardíaca/cirurgia , Diferenciação Celular , Miócitos Cardíacos
5.
Biomedicines ; 11(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979894

RESUMO

Patients with chronic heart failure (HF) have a poor prognosis due to irreversible impairment of left ventricular function, with 5-year survival rates <60%. Despite advances in conventional medicines for HF, prognosis remains poor, and there is a need to improve treatment further. Cell-based therapies to restore the myocardium offer a pragmatic approach that provides hope for the treatment of HF. Although first-generation cell-based therapies using multipotent cells (bone marrow-derived mononuclear cells, mesenchymal stem cells, adipose-derived regenerative cells, and c-kit-positive cardiac cells) demonstrated safety in preclinical models of HF, poor engraftment rates, and a limited ability to form mature cardiomyocytes (CMs) and to couple electrically with existing CMs, meant that improvements in cardiac function in double-blind clinical trials were limited and largely attributable to paracrine effects. The next generation of stem cell therapies uses CMs derived from human embryonic stem cells or, increasingly, from human-induced pluripotent stem cells (hiPSCs). These cell therapies have shown the ability to engraft more successfully and improve electromechanical function of the heart in preclinical studies, including in non-human primates. Advances in cell culture and delivery techniques promise to further improve the engraftment and integration of hiPSC-derived CMs (hiPSC-CMs), while the use of metabolic selection to eliminate undifferentiated cells will help minimize the risk of teratomas. Clinical trials of allogeneic hiPSC-CMs in HF are now ongoing, providing hope for vast numbers of patients with few other options available.

7.
Cell Prolif ; 55(8): e13248, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35534945

RESUMO

Basic research on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for cardiac regenerative therapy is one of the most active and complex fields to achieve this alternative to heart transplantation and requires the integration of medicine, science, and engineering. Mortality in patients with heart failure remains high worldwide. Although heart transplantation is the sole strategy for treating severe heart failure, the number of donors is limited. Therefore, hPSC-derived CM (hPSC-CM) transplantation is expected to replace heart transplantation. To achieve this goal, for basic research, various issues should be considered, including how to induce hPSC proliferation efficiently for cardiac differentiation, induce hPSC-CMs, eliminate residual undifferentiated hPSCs and non-CMs, and assess for the presence of residual undifferentiated hPSCs in vitro and in vivo. In this review, we discuss the current stage of resolving these issues and future directions for realizing hPSC-based cardiac regenerative therapy.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Miócitos Cardíacos
8.
J Mol Cell Cardiol ; 164: 83-91, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822838

RESUMO

The emergence of human induced pluripotent stem cells (hiPSCs) has revealed the potential for curing end-stage heart failure. Indeed, transplantation of hiPSC-derived cardiomyocytes (hiPSC-CMs) may have applications as a replacement for heart transplantation and conventional regenerative therapies. However, there are several challenges that still must be overcome for clinical applications, including large-scale production of hiPSCs and hiPSC-CMs, elimination of residual hiPSCs, purification of hiPSC-CMs, maturation of hiPSC-CMs, efficient engraftment of transplanted hiPSC-CMs, development of an injection device, and avoidance of post-transplant arrhythmia and immunological rejection. Thus, we developed several technologies based on understanding of the metabolic profiles of hiPSCs and hiPSC derivatives. In this review, we outline how to overcome these hurdles to realize the transplantation of hiPSC-CMs in patients with heart failure and introduce cutting-edge findings and perspectives for future regenerative therapy.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
9.
Front Cardiovasc Med ; 8: 774389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957258

RESUMO

The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.

10.
JACC Basic Transl Sci ; 6(3): 239-254, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778211

RESUMO

The severe shortage of donor hearts hampered the cardiac transplantation to patients with advanced heart failure. Therefore, cardiac regenerative therapies are eagerly awaited as a substitution. Human induced pluripotent stem cells (hiPSCs) are realistic cell source for regenerative cardiomyocytes. The hiPSC-derived cardiomyocytes are highly expected to help the recovery of heart. Avoidance of teratoma formation and large-scale culture of cardiomyocytes are definitely necessary for clinical setting. The combination of pure cardiac spheroids and gelatin hydrogel succeeded to recover reduced ejection fraction. The feasible transplantation strategy including transplantation device for regenerative cardiomyocytes are established in this study.

11.
CJC Open ; 2(6): 735-738, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33305241

RESUMO

Infected aortic aneurysm (IAA) is a rare, life-threatening disease with rapid progression and a high mortality rate. An 84-year-old man developed IAA caused by urosepsis owing to extended-spectrum ß-lactamase-producing Escherichia coli infection. Considering surgical risk and perioperative mortality, the patient underwent computed tomography-guided percutaneous abscess drainage and continuous irrigation with optimal antibiotic therapy. We controlled his systemic inflammation without surgery; thus, he was discharged. Six months later, we confirmed that the abscess had almost disappeared in the follow-up computed tomography scan. Percutaneous abscess drainage and irrigation may be an effective therapeutic option for surgical high-risk patients with IAA.


L'anévrisme aortique infecté (AAI) est une affection rare menaçant le pronostic vital, qui évolue rapidement et est associée à un taux de mortalité élevé. Nous exposons le cas d'un homme de 84 ans présentant un AAI secondaire à un urosepsis, lui-même causé par une infection à Escherichia coli productrice de bêta-lactamases à spectre étendu. Compte tenu du risque associé à une intervention chirurgicale et du risque de mortalité périopératoire, nous avons procédé à un drainage percutané de l'abcès guidé par tomographie assistée par ordinateur et sous irrigation continue, puis prescrit une antibiothérapie optimale. Nous avons ainsi réussi à maîtriser l'inflammation générale sans intervention chirurgicale, et le patient a pu recevoir son congé de l'hôpital. Six mois plus tard, une tomodensitométrie de suivi a permis de confirmer la disparition presque complète de l'abcès. Le drainage et l'irrigation d'un abcès par voie percutanée peuvent donc être une option thérapeutique efficace dans le cas des patients présentant un AAI les exposant à un risque chirurgical élevé.

12.
iScience ; 23(9): 101535, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33083764

RESUMO

The role of lipid metabolism in human pluripotent stem cells (hPSCs) is poorly understood. We have used large-scale targeted proteomics to demonstrate that undifferentiated hPSCs express different fatty acid (FA) biosynthesis-related enzymes, including ATP citrate lyase and FA synthase (FASN), than those expressed in hPSC-derived cardiomyocytes (hPSC-CMs). Detailed lipid profiling revealed that inhibition of FASN resulted in significant reduction of sphingolipids and phosphatidylcholine (PC); moreover, we found that PC was the key metabolite for cell survival in hPSCs. Inhibition of FASN induced cell death in undifferentiated hPSCs via mitochondria-mediated apoptosis; however, it did not affect cell survival in hPSC-CMs, neurons, or hepatocytes as there was no significant reduction of PC. Furthermore, we did not observe tumor formation following transplantation of FASN inhibitor-treated cells. Our findings demonstrate the importance of de novo FA synthesis in the survival of undifferentiated hPSCs and suggest applications for FASN inhibition in regenerative medicine.

13.
Inflamm Regen ; 40: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938077

RESUMO

Heart transplantation (HT) is the only radical treatment available for patients with end-stage heart failure that is refractory to optimal medical treatment and device therapies. However, HT as a therapeutic option is limited by marked donor shortage. To overcome this difficulty, regenerative medicine using human-induced pluripotent stem cells (hiPSCs) has drawn increasing attention as an alternative to HT. Several issues including the preparation of clinical-grade hiPSCs, methods for large-scale culture and production of hiPSCs and cardiomyocytes, prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and establishment of an effective transplantation strategy need to be addressed to fulfill this unmet medical need. The ongoing rapid technological advances in hiPSC research have been directed toward the clinical application of this technology, and currently, most issues have been satisfactorily addressed. Cell therapy using hiPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.

14.
Biochem Biophys Res Commun ; 511(3): 711-717, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30827508

RESUMO

Immunogenicity of immature pluripotent stem cells is a topic of intense debate. Immunogenic antigens, which are specific in pluripotent states, have not been described previously. In this study, we identified glypican-3 (GPC3), a known carcinoembryonic antigen, as a pluripotent state-specific immunogenic antigen. Additionally, we validated the applicability of human leukocyte antigen (HLA)-class I-restricted GPC3-reactive cytotoxic T lymphocytes (CTLs) in the removal of undifferentiated pluripotent stem cells (PSCs) from human induced pluripotent stem cell (hiPSC)-derivatives. HiPSCs uniquely express GPC3 in pluripotent states and were rejected by GPC3-reactive CTLs, which were sensitized with HLA-class I-restricted GPC3 peptides. Furthermore, GPC3-reactive CTLs selectively removed undifferentiated PSCs from hiPSC-derivatives in vitro and inhibited tumor formation in vivo. Our results demonstrate that GPC3 works as a pluripotent state-specific immunogenic antigen in hiPSCs and is applicable to regenerative medicine as a method of removing undifferentiated PSCs, which are the main cause of tumor formation.


Assuntos
Glipicanas/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Diferenciação Celular , Linhagem Celular , Glipicanas/análise , Antígeno HLA-A2/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Neoplasias/imunologia
15.
J Heart Lung Transplant ; 38(2): 203-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30691596

RESUMO

BACKGROUND: Induced pluripotent stem cell (iPSC)‒based regenerative therapy is a promising strategy for cardiovascular disease treatment; however, the method is limited by the myocardial retention of grafted iPSCs. Thus, an injection protocol that efficiently introduces and retains human iPSC-derived cardiomyocytes (hiPSC-CMs) within the myocardium is urgently needed. The objective of the present study was to develop a method to improve the retention of hiPSCs in the myocardium for cardiac therapy. METHODS: We efficiently produced hiPSC-CM spheroids in 3-dimensional (3D) culture using microwell plates, and developed an injection device for optimal 3D distribution of the spheroids in the myocardial layer. Device biocompatibility was assessed with purified hiPSC-CM spheroids. Device effectiveness was evaluated in 10- to 15-month-old farm pigs (n = 15) and 5- to 24-month-old micro-minipigs (n = 20). The pigs were euthanized after injection, and tissues were harvested for retention and histologic analysis. RESULTS: We demonstrated an injection device for direct intramyocardial transplantation of hiPSC-CM spheroids from large-scale culture. The device had no detrimental effects on cell viability, spheroid shape, or size. Direct epicardial injection of spheroids mixed with gelatin hydrogel into beating porcine hearts using this device resulted in better distribution and retention of transplanted spheroids in a layer within the myocardium than did conventional needle injection procedures. CONCLUSIONS: The combination of the newly developed transplant device and spheroid formation promotes the retention of transplanted CMs. These findings support the clinical application of hiPSC-CM spheroid‒based cardiac regenerative therapy in patients with heart failure.


Assuntos
Insuficiência Cardíaca/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/instrumentação , Animais , Materiais Biocompatíveis , Diferenciação Celular , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Insuficiência Cardíaca/patologia , Humanos , Injeções/instrumentação , Esferoides Celulares , Suínos , Porco Miniatura
16.
Cell Metab ; 23(4): 663-74, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27050306

RESUMO

Human pluripotent stem cells (hPSCs) are uniquely dependent on aerobic glycolysis to generate ATP. However, the importance of oxidative phosphorylation (OXPHOS) has not been elucidated. Detailed amino acid profiling has revealed that glutamine is indispensable for the survival of hPSCs. Under glucose- and glutamine-depleted conditions, hPSCs quickly died due to the loss of ATP. Metabolome analyses showed that hPSCs oxidized pyruvate poorly and that glutamine was the main energy source for OXPHOS. hPSCs were unable to utilize pyruvate-derived citrate due to negligible expression of aconitase 2 (ACO2) and isocitrate dehydrogenase 2/3 (IDH2/3) and high expression of ATP-citrate lyase. Cardiomyocytes with mature mitochondria were not able to survive without glucose and glutamine, although they were able to use lactate to synthesize pyruvate and glutamate. This distinguishing feature of hPSC metabolism allows preparation of clinical-grade cell sources free of undifferentiated hPSCs, which prevents tumor formation during stem cell therapy.


Assuntos
Glutamina/metabolismo , Células-Tronco Pluripotentes/citologia , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular , Ciclo do Ácido Cítrico , Glucose/metabolismo , Glicólise , Humanos , Oxirredução , Células-Tronco Pluripotentes/metabolismo , Ácido Pirúvico/metabolismo
17.
J Vis Exp ; (105)2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26650709

RESUMO

Recently, iPSCs have attracted attention as a new source of cells for regenerative therapies. Although the initial method for generating iPSCs relied on dermal fibroblasts obtained by invasive biopsy and retroviral genomic insertion of transgenes, there have been many efforts to avoid these disadvantages. Human peripheral T cells are a unique cell source for generating iPSCs. iPSCs derived from T cells contain rearrangements of the T cell receptor (TCR) genes and are a source of antigen-specific T cells. Additionally, T cell receptor rearrangement in the genome has the potential to label individual cell lines and distinguish between transplanted and donor cells. For safe clinical application of iPSCs, it is important to minimize the risk of exposing newly generated iPSCs to harmful agents. Although fetal bovine serum and feeder cells have been essential for pluripotent stem cell culture, it is preferable to remove them from the culture system to reduce the risk of unpredictable pathogenicity. To address this, we have established a protocol for generating iPSCs from human peripheral T cells using Sendai virus to reduce the risk of exposing iPSCs to undefined pathogens. Although handling Sendai virus requires equipment with the appropriate biosafety level, Sendai virus infects activated T cells without genome insertion, yet with high efficiency. In this protocol, we demonstrate the generation of iPSCs from human peripheral T cells in feeder-free conditions using a combination of activated T cell culture and Sendai virus.

18.
Stem Cells Transl Med ; 3(12): 1473-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355733

RESUMO

Cardiac regenerative therapy with human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, has been hampered by the lack of efficient strategies for expanding functional cardiomyocytes (CMs) to clinically relevant numbers. The development of the massive suspension culture system (MSCS) has shed light on this critical issue, although it remains unclear how hPSCs could differentiate into functional CMs using a MSCS. The proliferative rate of differentiating hPSCs in the MSCS was equivalent to that in suspension cultures using nonadherent culture dishes, although the MSCS provided more homogeneous embryoid bodies (EBs), eventually reducing apoptosis. However, pluripotent markers such as Oct3/4 and Tra-1-60 were still expressed in EBs 2 weeks after differentiation, even in the MSCS. The remaining undifferentiated stem cells in such cultures could retain a strong potential for teratoma formation, which is the worst scenario for clinical applications of hPSC-derived CMs. The metabolic purification of CMs in glucose-depleted and lactate-enriched medium successfully eliminated the residual undifferentiated stem cells, resulting in a refined hPSC-derived CM population. In colony formation assays, no Tra-1-60-positive colonies appeared after purification. The nonpurified CMs in the MSCS produced teratomas at a rate of 60%. However, purified CMs never induced teratomas, and enriched CMs showed proper electrophysiological properties and calcium transients. Overall, the combination of a MSCS and metabolic selection is a highly effective and practical approach to purify and enrich massive numbers of functional CMs and provides an essential technique for cardiac regenerative therapy with hPSC-derived CMs.


Assuntos
Diferenciação Celular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Técnicas de Cultura de Células , Separação Celular/métodos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
19.
PLoS One ; 9(1): e85645, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465630

RESUMO

Induced pluripotent stem cells (iPSCs) have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs) that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR) gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Linfócitos T/fisiologia , Potenciais de Ação/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Miócitos Cardíacos/citologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA