Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630732

RESUMO

The microbiota gut-brain axis (mGBA) is an important contributor to mental health and neurological and mood disorders. Lipopolysaccharides (LPS) are endotoxins that are components of Gram-negative bacteria cell walls and have been widely shown to induce both systemic and neuro-inflammation. Flaxseed (Linum usitatissimum) is an oilseed rich in fibre, n3-poly-unsaturated fatty acid (alpha-linolenic acid (ALA)), and lignan, secoisolariciresinol diglucoside, which all can induce beneficial effects across varying aspects of the mGBA. The objective of this study was to determine the potential for dietary supplementation with flaxseed or flaxseed oil to attenuate LPS-induced inflammation through modulation of the mGBA. In this study, 72 5-week-old male C57Bl/6 mice were fed one of three isocaloric diets for 3 weeks: (1) AIN-93G basal diet (BD), (2) BD + 10% flaxseed (FS), or (3) BD + 4% FS oil (FO). Mice were then injected with LPS (1 mg/kg i.p) or saline (n = 12/group) and samples were collected 24 h post-injection. Dietary supplementation with FS, but not FO, partially attenuated LPS-induced systemic (serum TNF-α and IL-10) and neuro-inflammation (hippocampal and/or medial prefrontal cortex IL-10, TNF-α, IL-1ß mRNA expression), but had no effect on sickness and nest-building behaviours. FS-fed mice had enhanced fecal microbial diversity with increased relative abundance of beneficial microbial groups (i.e., Lachnospiraceae, Bifidobacterium, Coriobacteriaceae), reduced Akkermansia muciniphila, and increased production of short-chain fatty acids (SCFAs), which may play a role in its anti-inflammatory response. Overall, this study highlights the potential for flaxseed to attenuate LPS-induced inflammation, in part through modulation of the intestinal microbiota, an effect which may not be solely driven by its ALA-rich oil component.


Assuntos
Linho , Microbioma Gastrointestinal , Masculino , Animais , Camundongos , Óleo de Semente do Linho/farmacologia , Lipopolissacarídeos , Interleucina-10 , Eixo Encéfalo-Intestino , Fator de Necrose Tumoral alfa , Dieta
2.
Cent European J Urol ; 68(4): 462-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26855803

RESUMO

INTRODUCTION: To study the efficacy of holmium laser urethrotomy with intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) in the treatment of urethral strictures. MATERIAL AND METHODS: A total of 50 patients with symptomatic urethral stricture were evaluated by clinical history, physical examination, uroflowmetry and retrograde urethrogram preoperatively. All patients were treated with holmium laser urethrotomy, followed by injection of tetra-inject at the urethrotomy site. Tetra-inject was prepared by diluting acombination of 40 mg Triamcinolone, 2 mg Mitomycin, 3000 UHyaluronidase and 600 mg N-acetyl cysteine in 5-10 ml of saline, according to the stricture length. An indwelling 18 Fr silicone catheter was left in place for 7-10 days.All patients were followed-up for 6-18 months postoperatively by history, uroflowmetry, and if required, retrograde urethrogram and micturating urethrogram every 3 months. RESULTS: 41 (82%) patients had asuccessful outcome,whereas 9 (18%) had recurrences during a follow-up ranging from 6-18 months. In <1 cm length strictures, the success rate was 100%, while in 1-3 cm and >3 cm lengthsthe success rates were 81.2% and 66.7% respectively. This modality, thus, has an encouraging success rate, especially in those with short segment urethral strictures (<3 cm). CONCLUSIONS: Holmium laser urethrotomy with intralesional injection ofSantosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase, N-acetyl cysteine) is a safe and effective minimally-invasive therapeutic modality for short segment urethral strictures.

3.
J Ethnopharmacol ; 150(1): 51-70, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24041460

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Long term hyperglycemia leads to development of complications associated with diabetes. Diabetic complications are now a global health problem without effective therapeutic approach. Hyperglycemia and oxidative stress are important components for the development of diabetic complications. Over the past few decades, herbal medicines have attracted much attention as potential therapeutic agents in the prevention and treatment of diabetic complications due to their multiple targets and less toxic side effects. This review aims to assess the current available knowledge of medicinal herbs for attenuation and management of diabetic complications and their underlying mechanisms. MATERIAL AND METHODS: Bibliographic investigation was carried out by scrutinizing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases (SCOPUS, PUBMED, SCIELO, NISCAIR, Google Scholar) to retrieve available published literature. The inclusion criteria for the selection of plants were based upon all medicinal herbs and their active compounds with attributed potentials in relieving diabetic complications. Moreover, plants which have potential effect in ameliorating oxidative stress in diabetic animals have been included. RESULTS: Overall, 238 articles were reviewed for plant literature and out of the reviewed literature, 127 articles were selected for the study. Various medicinal plants/plant extracts containing flavonoids, alkaloids, phenolic compounds, terpenoids, saponins and phytosterol type chemical constituents were found to be effective in the management of diabetic complications. This effect might be attributed to amelioration of persistent hyperglycemia, oxidative stress and modulation of various metabolic pathways involved in the pathogenesis of diabetic complications. CONCLUSION: Screening chemical candidate from herbal medicine might be a promising approach for new drug discovery to treat the diabetic complications. There is still a dire need to explore the mechanism of action of various plant extracts and their toxicity profile and to determine their role in therapy of diabetic complications. Moreover, a perfect rodent model which completely mimics human diabetic complications should be developed.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Fitoterapia , Plantas Medicinais , Animais , Humanos , Hiperglicemia/complicações , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA