Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Connect Tissue Res ; 62(6): 671-680, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33153311

RESUMO

Purpose/Aim: Expanded, human connective tissue cells can adopt mesenchymal stromal cell (MSC) properties that are favorable for applications in regenerative medicine. Sheep are used as a large animal model for cell therapies, although for preclinical testing it is important to establish whether ovine cells resemble humans in their tendency to adopt MSC properties. The objective of this study was to investigate whether cells from five ovine connective tissues are MSC-like in their propensity for extensive expansion and immunophenotype.Materials and Methods: Monolayer cultures were established with cells from annulus fibrosus, cartilage, meniscus, tendon, and nucleus pulposus. Bone marrow MSCs were evaluated as a control. Cultures were seeded at 500 cells/cm2, and subcultured every 5 days up to day 20. Flow cytometry was used to evaluate expression of cluster of differentiation (CD) molecules associated with MSCs (29, 44, 166). Colony formation was evaluated using time-lapse imaging of individual cells.Results: By day 20, cumulative population doublings ranged between 22 (chondrocytes) and 27 (MSCs). All cells uniformly expressed CD44 and 73. Expression of CD166 for MSCs was 98-99%, and ranged between 64 and 97% for the other cell types. Time-lapse imaging demonstrated that 58-94% of the cells colonized as indicated by 3 population doublings within 52 hours.Conclusions: Cells from ovine connective tissues resembled MSCs in their propensity for sustained, colony-forming growth and expression of CD molecules. These data supports the potential for preclinical testing of MSC-like connective tissue cells in sheep.


Assuntos
Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos , Citometria de Fluxo , Imunofenotipagem , Medicina Regenerativa , Ovinos
2.
J Orthop Res ; 38(12): 2539-2550, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32589800

RESUMO

Platelet-rich plasma is autologous plasma that contains concentrated platelets compared to whole blood. It is relatively inexpensive to produce, can be easily isolated from whole blood, and can be administered while the patient is in the operating room. Further, because platelet-rich plasma is an autologous therapy, there is minimal risk for adverse reactions to the patient. Platelet-rich plasma has been used to promote bone regeneration due to its abundance of concentrated growth factors that are essential to wound healing. In this review, we summarize the methods for producing platelet-rich plasma and the history of its use in bone regeneration. We also summarize the growth factor profiles derived from platelet-rich plasma, with emphasis on those factors that play a direct role in promoting bone repair within the local fracture environment. In addition, we discuss the potential advantages of combining platelet-rich plasma with mesenchymal stem cells, a multipotent cell type often obtained from bone marrow or fat, to improve craniofacial and long bone regeneration. We detail what is currently known about how platelet-rich plasma influences mesenchymal stem cells in vitro, and then highlight the clinical outcomes of administering platelet-rich plasma and mesenchymal stem cells as a combination therapy to promote bone regeneration in vivo.


Assuntos
Regeneração Óssea , Ortopedia/tendências , Plasma Rico em Plaquetas , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia
3.
Cartilage ; 11(3): 364-373, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30056741

RESUMO

OBJECTIVE: Rats are an early preclinical model for cartilage tissue engineering, and a practical species for investigating the effects of aging. However, rats may be a poor aging model for mesenchymal stem cells (MSCs) based on laboratory reports of a severe decline in chondrogenesis beyond young adulthood. Such testing has not been conducted with MSCs seeded in a scaffold, which can improve the propensity of MSCs to undergo chondrogenesis. Therefore, the objective of this study was to evaluate chondrogenesis of middle-aged rat MSCs encapsulated in agarose. DESIGN: MSCs from 14- to 15-month-old rats were expanded, seeded into agarose, and cultured in chondrogenic medium with or without 5% serum for 15 days. Samples were evaluated for cell viability and cartilaginous extracellular matrix (ECM) accumulation. Experiments were repeated using MSCs from 6-week-old rats. RESULTS: During expansion, middle-aged rat MSCs demonstrated a diminishing proliferation rate that was improved ~2-fold in part by transient exposure to chondrogenic medium. In agarose culture in defined medium, middle-aged rat MSCs accumulated ECM to a much greater extent than negative controls. Serum supplementation improved cell survival ~2-fold, and increased ECM accumulation ~3-fold. Histological analysis indicated that defined medium supported chondrogenesis in a subset of cells, while serum-supplementation increased the frequency of chondrogenic cells. In contrast, young rat MSCs experienced robust chondrogenesis in defined medium that was not improved with serum-supplementation. CONCLUSIONS: These data demonstrate a previously-unreported propensity of middle-aged rat MSCs to undergo chondrogenesis, and the potential of serum to enhance chondrogenesis of aging MSCs.


Assuntos
Cartilagem/citologia , Condrogênese/efeitos dos fármacos , Meios de Cultura/farmacologia , Modelos Animais de Doenças , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/fisiologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Ratos , Sefarose , Soro , Engenharia Tecidual
4.
Stem Cells Dev ; 29(2): 110-118, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31744386

RESUMO

Both bone marrow-derived mesenchymal stem cells (BMDMSCs) and extracorporeal shockwave (ESW) have shown promise for enhancing fracture repair. If exposure of BMDMSCs to ESW enhances osteogenic differentiation, these therapies may be combined in vivo or used as a method for preconditioning BMDMSCs. The objective of this study was to determine the effect of ESW on the osteogenic ability of equine BMDMSCs. We hypothesized that ESW would promote osteogenesis evidenced by increased gene expression, alkaline phosphatase (ALPL) expression, slide morphologic score, and protein expression. BMDMSCs were evaluated from six horses. BMDMSCs were culture expanded to passage 3, dissociated, then placed in conical tubes. Treatment cells ("shocked") were exposed to 500 pulses at 0.16 mJ/mm2 energy. Cells were then reseeded and grown in either growth medium or osteogenic medium. Cellular proliferation and trilineage potential were determined. Cellular morphology was scored and cells were harvested at 1, 3, 7, 14, and 21 days for rtPCR gene expression of osteogenic markers [osteonectin (ONT), osteocalcin (OCN), ALPL, collagen type 3 (COL3), and runt-related transcription factor 2 (RUNX2)]. Media supernatants were evaluated for secretion of BMP-2, VEGF, TGFß, and PGE2 and cellular lysates were evaluated for ALPL production. There was no difference between the proliferative ability of shocked cells versus unshocked cells in either growth medium or osteogenic medium. ALPL production was greater in shocked cells maintained in osteogenic medium versus unshocked cells in osteogenic medium at day 3 (P < 0.005). Independent of media type, ESW caused a decrease in VEGF and TGFß production at day 3. No significant increases in gene expression were identified by rtPCR. Exposure of BMDMSCs to ESW does not result in negative effects. An initial significant increase in ALPL was detected but no persistent osteogenic effect was observed with cell expansion.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Ondas de Choque de Alta Energia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cavalos , Células-Tronco Mesenquimais/citologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Orthop Res ; 37(6): 1368-1375, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30095195

RESUMO

Ex vivo induction of chondrogenesis is a promising approach to improve upon the use of bone marrow mesenchymal stem cells (MSCs) for cartilage tissue engineering. This study evaluated the potential to induce chondrogenesis with days of culture in chondrogenic medium for MSCs encapsulated in self-assembling peptide hydrogel. To simulate the transition from preconditioning culture to implantation, MSCs were isolated from self-assembling peptide hydrogel into an individual cell suspension. Commitment to chondrogenesis was evaluated by seeding preconditioned MSCs into agarose and culturing in the absence of the chondrogenic cytokine transforming growth factor beta (TGFß). Positive controls consisted of undifferentiated MSCs seeded into agarose and cultured in medium containing TGFß. Three days of preconditioning was sufficient to produce chondrogenic MSCs that accumulated ∼75% more cartilaginous extracellular matrix than positive controls by day 17. However, gene expression of type X collagen was ∼65-fold higher than positive controls, which was attributed to the absence of TGFß. Potential induction of immunogenicity with preconditioning culture was indicated by expression of major histocompatibility complex class II (MHCII), which was nearly absence in undifferentiated MSCs, and ∼7% positive for preconditioned cells. These data demonstrate the potential to generate chondrogenic MSCs with days of self-assembling peptide hydrogel, and the ability to readily recover an individual cell suspension that is suited for injectable therapies. However, continued exposure to TGFß may be necessary to prevent hypertrophy indicated by type X collagen expression, while immunogenicity may be a concern for allogeneic applications. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1368-1375, 2019.


Assuntos
Condrogênese/fisiologia , Células-Tronco Mesenquimais/fisiologia , Peptídeos/farmacologia , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Colágeno Tipo II/análise , Cavalos , Hidrogéis , Células-Tronco Mesenquimais/citologia , Antígenos Thy-1/análise , Fatores de Tempo , Fator de Crescimento Transformador beta/farmacologia
6.
J Orthop Res ; 36(1): 506-514, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28548680

RESUMO

Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.


Assuntos
Condrogênese , Colágeno/metabolismo , Células-Tronco Mesenquimais/citologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Meios de Cultura , Matriz Extracelular/metabolismo , Glutationa/análise , Cavalos , Carbonilação Proteica , Sefarose
7.
Tissue Eng Part A ; 22(13-14): 917-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27268956

RESUMO

Tissue engineering approaches using growth factor-functionalized acellular scaffolds to support and guide repair driven by endogenous cells are thought to require a careful balance between cell recruitment and growth factor release kinetics. The objective of this study was to identify a growth factor combination that accelerates progenitor cell migration into self-assembling peptide hydrogels in the context of cartilage defect repair. A novel 3D gel-to-gel migration assay enabled quantification of the chemotactic impact of platelet-derived growth factor-BB (PDGF-BB), heparin-binding insulin-like growth factor-1 (HB-IGF-1), and transforming growth factor-ß1 (TGF-ß1) on progenitor cells derived from subchondral bovine trabecular bone (bone-marrow progenitor cells, BM-PCs) encapsulated in the peptide hydrogel [KLDL]3. Only the combination of PDGF-BB and TGF-ß1 stimulated significant migration of BM-PCs over a 4-day period, measured by confocal microscopy. Both PDGF-BB and TGF-ß1 were slowly released from the gel, as measured using their (125)I-labeled forms, and they remained significantly present in the gel at 4 days. In the context of augmenting microfracture surgery for cartilage repair, our strategy of delivering chemotactic and proanabolic growth factors in KLD may provide the necessary local stimulus to help increase defect cellularity, providing more cells to generate repair tissue.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Células-Tronco/metabolismo , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/farmacologia , Animais , Becaplermina , Células da Medula Óssea/citologia , Bovinos , Células-Tronco/citologia
8.
Cartilage ; 7(1): 92-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26958321

RESUMO

OBJECTIVE: Dexamethasone is known to support mesenchymal stem cell (MSC) chondrogenesis, although the effects of dose and timing of exposure are not well understood. The objective of this study was to investigate these variables using a laboratory model of MSC chondrogenesis. DESIGN: Equine MSCs were encapsulated in agarose and cultured in chondrogenic medium with 1 or 100 nM dexamethasone, or without dexamethasone, for 15 days. Samples were analyzed for extracellular matrix (ECM) accumulation, prostaglandin E2 and alkaline phosphatase secretion, and gene expression of selected collagens and catabolic enzymes. Timing of exposure was evaluated by ECM accumulation after dexamethasone was withdrawn over the first 6 days, or withheld for up to 3 or 6 days of culture. RESULTS: ECM accumulation was not significantly different between 1 and 100 nM dexamethasone, but was suppressed ~40% in dexamethasone-free cultures. Prostaglandin E2 secretion, and expression of catabolic enzymes, including matrix metalloproteinase 13, and type X collagen was generally lowest in 100 nM dexamethasone and not significantly different between 1 nM and dexamethasone-free cultures. Dexamethasone could be withheld for at least 2 days without affecting ECM accumulation, while withdrawal studies suggested that dexamethasone supports ECM accumulation beyond day 6. CONCLUSION: One nanomolar dexamethasone supported robust cartilage-like ECM accumulation despite not having an effect on markers of inflammation, although higher concentrations of dexamethasone may be necessary to suppress undesirable hypertrophic differentiation. While early exposure to dexamethasone was not critical, sustained exposure of at least a week appears to be necessary to maximize ECM accumulation.

9.
J Bone Joint Surg Am ; 98(1): 23-34, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26738900

RESUMO

BACKGROUND: The chondrogenic potential of culture-expanded bone-marrow-derived mesenchymal stem cells (BMDMSCs) is well described. Numerous studies have also shown enhanced repair when BMDMSCs, scaffolds, and growth factors are placed into chondral defects. Platelets provide a rich milieu of growth factors and, along with fibrin, are readily available for clinical use. The objective of this study was to determine if the addition of BMDMSCs to an autologous platelet-enriched fibrin (APEF) scaffold enhances chondral repair compared with APEF alone. METHODS: A 15-mm-diameter full-thickness chondral defect was created on the lateral trochlear ridge of both stifle joints of twelve adult horses. In each animal, one defect was randomly assigned to receive APEF+BMDMSCs and the contralateral defect received APEF alone. Repair tissues were evaluated one year later with arthroscopy, histological examination, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and biomechanical testing. RESULTS: The arthroscopic findings, MRI T2 map, histological scores, structural stiffness, and material stiffness were similar (p > 0.05) between the APEF and APEF+BMDMSC-treated repairs at one year. Ectopic bone was observed within the repair tissue in four of twelve APEF+BMDMSC-treated defects. Defects repaired with APEF alone had less trabecular bone edema (as seen on MRI) compared with defects repaired with APEF+BMDMSCs. Micro-CT analysis showed thinner repair tissue in defects repaired with APEF+BMDMSCs than in those treated with APEF alone (p < 0.05). CONCLUSIONS: APEF alone resulted in thicker repair tissue than was seen with APEF+BMDMSCs. The addition of BMDMSCs to APEF did not enhance cartilage repair and stimulated bone formation in some cartilage defects. CLINICAL RELEVANCE: APEF supported repair of critical-size full-thickness chondral defects in horses, which was not improved by the addition of BMDMSCs. This work supports further investigation to determine whether APEF enhances cartilage repair in humans.


Assuntos
Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Fibrina/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Artroscopia/métodos , Biópsia por Agulha , Plaquetas , Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Fibrina/administração & dosagem , Seguimentos , Cavalos , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética/métodos , Distribuição Aleatória , Engenharia Tecidual/métodos , Alicerces Teciduais , Transplante Autólogo , Resultado do Tratamento
10.
Vet Surg ; 43(3): 255-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24433318

RESUMO

OBJECTIVE: To report outcome of horses with femorotibial lesions (meniscal, cartilage or ligamentous) treated with surgery and intra-articular administration of autologous bone marrow derived mesenchymal stem cells (BMSCs). STUDY DESIGN: Prospective case series. ANIMALS: Horses (n = 33). METHODS: Inclusion criteria included horses that had lameness localized to the stifle by diagnostic anesthesia, exploratory stifle arthroscopy and subsequent intra-articular administration of autologous BMSCs. Case details and follow-up were gathered from medical records, owner, trainer or veterinarian. Outcome was defined as returned to previous level of work, returned to work, or failed to return to work. RESULTS: Follow-up (mean, 24 months) was obtained; 43% of horses returned to previous level of work, 33% returned to work, and 24% failed to return to work. In horses with meniscal damage (n = 24) a higher percentage in the current study (75%) returned to some level of work compared to those in previous reports (60-63%) that were treated with arthroscopy alone, which resulted in a statistically significant difference between studies (P = .038). Joint flare post injection was reported in 3 horses (9.0%); however, no long-term effects were noted. CONCLUSIONS: Intra-articular administration of BMSC postoperatively for stifle lesions appeared to be safe, with morbidity being similar to that of other biologic agents. Improvement in ability to return to work may be realized with BMSC treatment compared to surgery alone in horses with stifle injury.


Assuntos
Células da Medula Óssea/fisiologia , Cavalos/lesões , Transplante de Células-Tronco Mesenquimais/veterinária , Células-Tronco Mesenquimais/fisiologia , Joelho de Quadrúpedes/lesões , Animais , Artroscopia/veterinária , Feminino , Seguimentos , Coxeadura Animal/fisiopatologia , Coxeadura Animal/terapia , Masculino , Cuidados Pós-Operatórios/métodos , Cuidados Pós-Operatórios/normas , Cuidados Pós-Operatórios/veterinária , Estudos Prospectivos , Resultado do Tratamento
11.
J Biomed Mater Res A ; 102(5): 1275-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23650117

RESUMO

Tissue engineering strategies for cartilage defect repair require technology for local targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was to determine the release kinetics of transforming growth factor ß1 (TGF-ß1) from self-assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate chondrogenesis of encapsulated young equine bone marrow stromal cells (BMSCs). Although both peptide and agarose hydrogels retained TGF-ß1, fivefold higher retention was found in peptide. Excess unlabeled TGF-ß1 minimally displaced retained radiolabeled TGF-ß1, demonstrating biologically relevant loading capacity for peptide hydrogels. The initial release from acellular peptide hydrogels was nearly threefold lower than agarose hydrogels, at 18% of loaded TGF-ß1 through 3 days as compared to 48% for agarose. At day 21, cumulative release of TGF-ß1 was 32-44% from acellular peptide hydrogels, but was 62% from peptide hydrogels with encapsulated BMSCs, likely due to cell-mediated TGF-ß1 degradation and release of small labeled species. TGF-ß1 loaded peptide hydrogels stimulated chondrogenesis of young equine BMSCs, a relevant preclinical model for treating injuries in young human cohorts. Self-assembling peptide hydrogels can be used to deliver chondrogenic factors to encapsulated cells making them a promising technology for in vivo, cell-based regenerative medicine.


Assuntos
Condrogênese/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Peptídeos/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Adsorção , Animais , Bovinos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Preparações de Ação Retardada , Cavalos , Humanos , Radioisótopos do Iodo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Sefarose
12.
Am J Vet Res ; 74(5): 801-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23627395

RESUMO

OBJECTIVE: To compare the mesenchymal stem cell (MSC) yield and chondrogenic and osteogenic differentiation from 5- and 50-mL bone marrow aspirates from horses. ANIMALS: Six 2- to 5-year-old mixed-breed horses. Procedures-2 sequential 5-mL aspirates were drawn from 1 ilium or sternebra. A single 50-mL aspirate was drawn from the contralateral ilium, and 2 sequential 50-mL aspirates were drawn from a second sternebra. The MSC yield was determined through the culture expansion process. Chondrogenesis and osteogenesis were evaluated by means of conventional laboratory methods. RESULTS: The second of the 2 sequential 50-mL sternal aspirates yielded few to no MSCs. Independent of location, the highest density of MSCs was in the first of the 2 sequential 5-mL fractions, although with subsequent culture expansion, the overall yield was not significantly different between the first 5-mL and first 50-mL fractions. Independent of location, chondrogenesis and osteogenesis were not significantly different among fractions. Independent of fraction, the overall cell yield and chondrogenesis from the ilium were significantly higher than that from the sternum. CONCLUSIONS AND CLINICAL RELEVANCE: This study failed to detect an additional benefit of 50-mL aspirates over 5-mL aspirates for culture-expanding MSCs for equine clinical applications. Chondrogenesis was highest for MSCs from ilial aspirates, although it is not known whether chondrogenesis is indicative of activation of other proposed pathways by which MSCs heal tissues.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Proliferação de Células , Cavalos , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Ílio , Células-Tronco Mesenquimais/fisiologia , Esterno
13.
J Vet Cardiol ; 14(1): 223-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22364693

RESUMO

OBJECTIVES: Degenerative (myxomatous) mitral valve disease is an important cardiac disease in dogs and humans. The mechanisms that initiate and propagate myxomatous pathology in mitral valves are poorly understood. We investigated the hypothesis that tensile strain initiates expression of proteins that mediate myxomatous pathology. We also explored whether tensile strain could induce the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1), serotonin synthesis, and markers of chondrogenesis. ANIMALS: Mitral valves were obtained postmortem from dogs without apparent cardiovascular disease. METHODS: Mitral valves were placed in culture and subjected to 30% static or cyclic tensile strain and compared to cultured mitral valves subjected to 0% strain for 72 h. Abundance of target effector proteins, TPH1, and chondrogenic marker proteins was determined by immunoblotting. Serotonin was measured in the conditioned media by ELISA. RESULTS: Both static and cyclic strain increased (p < 0.05) expression of myxomatous effector proteins including markers of an activated myofibroblast phenotype, matrix catabolic and synthetic enzymes in canine mitral valves compared to unstrained control. Expression of TPH1 was increased in statically and cyclically strained mitral valves. Expression of chondrogenic markers was increased in statically strained mitral valves. Serotonin levels were higher (p < 0.05) in media of cyclically strained valves compared to unstrained valves after 72 h of culture. CONCLUSION: Static or cyclic tensile strain induces acute increases in the abundance of myxomatous effector proteins, TPH1, and markers of chondrogenesis in canine mitral valves. Canine mitral valves are capable of local serotonin synthesis, which may be influenced by strain.


Assuntos
Doenças do Cão/metabolismo , Regulação da Expressão Gênica/fisiologia , Valva Mitral/metabolismo , Serotonina/metabolismo , Animais , Biomarcadores , Fenômenos Biomecânicos , Cães , Immunoblotting , Valva Mitral/patologia , Serotonina/genética
14.
Am J Vet Res ; 73(2): 313-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22280396

RESUMO

OBJECTIVE: To evaluate the effect of fibrin concentrations on mesenchymal stem cell (MSC) migration out of autologous and commercial fibrin hydrogels. SAMPLE: Blood and bone marrow from six 2- to 4-year-old horses. PROCEDURES: Autologous fibrinogen was precipitated from plasma and solubilized into a concentrated solution. Mesenchymal stem cells were resuspended in fibrinogen solutions containing 100%, 75%, 50%, and 25% of the fibrinogen precipitate solution. Fibrin hydrogels were created by mixing the fibrinogen solutions with MSCs and thrombin on tissue culture plates. After incubation for 24 hours in cell culture medium, the MSCs that had migrated onto the tissue culture surface and beyond the boundary of the hydrogels were counted. This procedure was repeated with a commercial fibrin sealant. RESULTS: Hydrogel-to-surface MSC migration was detected for all fibrin hydrogels. Migration from the 25% autologous hydrogels was 7.3-, 5.2-, and 4.6-fold higher than migration from 100%, 75%, and 50% autologous hydrogels, respectively. The number of migrating cells from 100%, 75%, and 50% autologous hydrogels did not differ significantly. With commercial fibrin sealant, the highest magnitude of migration was from the 25% hydrogels, and it was 26-fold higher than migration from 100% hydrogels. The 75% and 50% hydrogels resulted in migration that was 9.5- and 4.2-fold higher than migration from the 100% hydrogels, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: MSC migration from fibrin hydrogels increased with dilution of the fibrinogen component for both autologous and commercial sources. These data supported the feasibility of using diluted fibrin hydrogels for rapid delivery of MSCs to the surface of damaged tissues.


Assuntos
Movimento Celular/fisiologia , Fibrina/química , Cavalos , Hidrogéis/química , Células-Tronco Mesenquimais/fisiologia , Alicerces Teciduais , Animais , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Tecidos
15.
Arthroscopy ; 27(11): 1552-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862278

RESUMO

PURPOSE: This study evaluated intra-articular injection of bone marrow-derived mesenchymal stem cells (BMSCs) to augment healing with microfracture compared with microfracture alone. METHODS: Ten horses (aged 2.5 to 5 years) had 1-cm2 defects arthroscopically created on both medial femoral condyles of the stifle joint (analogous to the human knee). Defects were debrided to subchondral bone followed by microfracture. One month later, 1 randomly selected medial femorotibial joint in each horse received an intra-articular injection of either 20 × 10(6) BMSCs with 22 mg of hyaluronan or 22 mg of hyaluronan alone. Horses were confined for 4 months, with hand walking commencing at 2 weeks and then increasing in duration and intensity. At 4 months, horses were subjected to strenuous treadmill exercise simulating race training until completion of the study at 12 months. Horses underwent musculoskeletal and radiographic examinations bimonthly and second-look arthroscopy at 6 months. Horses were euthanized 12 months after the defects were made, and the affected joints underwent magnetic resonance imaging and gross, histologic, histomorphometric, immunohistochemical, and biochemical examinations. RESULTS: Although there was no evidence of any clinically significant improvement in the joints injected with BMSCs, arthroscopic and gross evaluation confirmed a significant increase in repair tissue firmness and a trend for better overall repair tissue quality (cumulative score of all arthroscopic and gross grading criteria) in BMSC-treated joints. Immunohistochemical analysis showed significantly greater levels of aggrecan in repair tissue treated with BMSC injection. There were no other significant treatment effects. CONCLUSIONS: Although there was no significant difference clinically or histologically in the 2 groups, this study confirms that intra-articular BMSCs enhance cartilage repair quality with increased aggrecan content and tissue firmness. CLINICAL RELEVANCE: Clinical use of BMSCs in conjunction with microfracture of cartilage defects may be potentially beneficial.


Assuntos
Artroplastia Subcondral , Transplante de Medula Óssea , Cartilagem/lesões , Cartilagem/cirurgia , Traumatismos do Joelho/cirurgia , Transplante de Células-Tronco Mesenquimais , Procedimentos Ortopédicos/métodos , Cicatrização , Animais , Artroscopia , Cartilagem/patologia , Cartilagem/fisiologia , Terapia Combinada , Cavalos , Ácido Hialurônico/uso terapêutico , Injeções Intra-Articulares , Fraturas Intra-Articulares , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/patologia , Imageamento por Ressonância Magnética , Modelos Animais , Radiografia , Distribuição Aleatória , Método Simples-Cego , Joelho de Quadrúpedes/lesões , Joelho de Quadrúpedes/fisiologia , Membrana Sinovial/patologia , Resultado do Tratamento , Viscossuplementos/uso terapêutico
16.
J Tissue Eng Regen Med ; 5(8): 600-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21774083

RESUMO

Mesenchymal stem cells (MSCs) are present in low density in bone marrow and culture expansion is necessary to obtain sufficient numbers for many proposed therapies. Researchers have characterized MSC growth on tissue culture plastic (TCP), although few studies have explored proliferation on other growth substrates. Using adult equine MSCs, we evaluated proliferation on fibrinogen-rich precipitate (FRP) surfaces created from blood plasma. When seeded at 1 × 10(4) cells/cm(2) and passaged five times over 10 days, MSCs on FRP in medium containing fibroblast growth factor 2 (FGF2) resulted in a ∼2.5-fold increase in cell yield relative to TCP. In FGF2-free medium, FRP stimulated a 10.4-fold increase in cell yield over TCP after 10 days, although control cultures maintained in FGF2 on TCP demonstrated that the stimulatory effect of FRP was not as lasting as that of FGF2. Chondrogenic cultures demonstrated that FRP did not affect differentiation. On TCP, MSCs seeded at 500 cells/cm(2) experienced a 4.6-fold increase in cell yield over cultures seeded at 1 × 10(4) cells/cm(2) following 10 days of expansion. In 500 cells/cm(2) cultures, FRP stimulating a two-fold increase in cell yield over TCP without affecting differentiation. Low-density FRP cultures showed a more even distribution of cells than TCP, suggesting that FRP may accelerate proliferation by reducing contact inhibition that slows proliferation. In addition, FRP appears capable of binding FGF2, as FRP surfaces pre-conditioned with FGF2 supported greater proliferation than FGF2-free cultures. Taken together, these factors indicate that substrates obtained from simple and inexpensive processing of blood enhance MSC proliferation and promote efficient coverage of expansion surfaces.


Assuntos
Fibrinogênio/farmacologia , Células-Tronco Mesenquimais/citologia , Plasma/química , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo II/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Glicosaminoglicanos/metabolismo , Cavalos , Imuno-Histoquímica , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Propriedades de Superfície/efeitos dos fármacos
17.
Tissue Eng Part A ; 17(1-2): 83-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20672992

RESUMO

Self-assembling peptide hydrogels were modified to deliver transforming growth factor ß1 (TGF-ß1) to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-ß1 medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-ß1 to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-ß1-free culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-ß1 (Teth-TGF) or adsorbed TGF-ß1 (Ads-TGF) were cultured in the TGF-ß1-free medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-ß1 medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth-TGF did not stimulate chondrogenesis. In parallel experiments, TGF-ß1 adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-ß1 stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-ß1 produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Hidrogéis/química , Peptídeos/química , Fator de Crescimento Transformador beta1/farmacologia , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Bovinos , Células Cultivadas , Cavalos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Engenharia Tecidual , Fator de Crescimento Transformador beta1/química
18.
J Orthop Res ; 29(1): 26-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20665550

RESUMO

The objective of this study was to evaluate mesenchymal stem cell (MSC) chondrogenesis following incubation in chondrogenic suspension cultures from which single cells were obtained. MSCs were maintained in suspension over a nonadherent surface for 3 days, dissociated into a suspension, and then evaluated for chondrogenesis in agarose in the presence or absence of transforming growth factor beta (TGFß). In a second experiment, MSCs from suspension culture were returned to monolayer expansion for 2 days prior to testing for chondrogenesis. In both cases, undifferentiated MSCs were evaluated as controls. Suspension culture alone did not stimulate chondrogenesis. Suspension followed by expansion stimulated a four- to ninefold increase in extracellular matrix (ECM) synthesis in TGFß-free cultures, a finding that was attributed to an increase in viable MSCs that secreted a proteoglycan-rich ECM. Gene expression of aggrecan and type II collagen increased with suspension culture, but decreased with postsuspension expansion. Therefore, stimulation of ECM synthesis without additional TGFß exposure could not be attributed to an enhancement of chondrogenesis with monolayer culture. ECM synthesis of suspension/expansion-conditioned MSCs without additional TGFß exposure was less than samples maintained in TGFß throughout the differentiation culture. Based on these findings, a better understanding of factors associated with early-stage chondrogenesis and MSC differentiation to a highly active phenotype may lead to improved methods for stimulating chondrogenesis during short-term culture.


Assuntos
Células da Medula Óssea/citologia , Condrogênese , Células-Tronco Mesenquimais/citologia , Animais , Matriz Extracelular/metabolismo , Cavalos , Suspensões , Fator de Crescimento Transformador beta/farmacologia
19.
Biomacromolecules ; 11(10): 2629-39, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20795698

RESUMO

It is generally accepted that both surface chemistry and biochemical cues affect mesenchymal stem cell (MSC) proliferation and differentiation. Several growth factors that have strong influences on MSC behavior bind to glycosaminoglycans in interactions that affect their stability and their biochemical activity. The goal of this work was to develop polysaccharide-based polyelectrolyte multilayers (PEMs) to bind and stabilize growth factors for delivery to MSCs. Using the naturally derived polysaccharides chitosan and heparin, PEMs were constructed on gold-coated glass chips, tissue-culture polystyrene (TCPS), and titanium. PEM construction and basic fibroblast growth factor (FGF-2) adsorption to PEMs were evaluated by Fourier transform surface plasmon resonance, X-ray photoelectron spectroscopy, and polarization modulation infrared reflection absorption spectroscopy. The functional response of bone marrow-derived ovine MSCs to FGF-2 on PEM-coated TCPS and titanium was evaluated in vitro, in the presence and absence of adsorbed fibronectin. The effect of FGF-2 dose and presentation on MSC attachment and proliferation was evaluated using low-serum media, over four days. On PEM-coated TCPS, we found that FGF-2 adsorbed to heparin-terminated PEMs with adsorbed fibronectin induces greater cell density and a higher proliferation rate of MSCs than any of the other conditions tested, including delivery of the FGF-2 in solution, at an optimally mitogenic dose. Cell densities on day four were 1.8 times higher when FGF-2 was delivered by adsorption to the PEM than when FGF-2 was delivered in solution. This system represents a promising candidate for the development of surface coatings that can stabilize and potentiate the activity of growth factors for therapeutic applications. Interestingly, the same effects were not observed when FGF-2 was delivered by adsorption to PEMs on titanium. When the polysaccharide-based PEMs were formed on titanium, the proliferative response of ovine MSCs to adsorbed FGF-2 was not as strong as the response to FGF-2 delivered in solution.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Fator 2 de Crescimento de Fibroblastos , Heparina/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Polímeros/química , Engenharia Tecidual/métodos , Adsorção , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Vidro/química , Ouro/química , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/citologia , Poliestirenos/química , Ligação Proteica , Estabilidade Proteica , Ovinos , Soluções , Propriedades de Superfície , Titânio/química
20.
J Orthop Res ; 28(10): 1330-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20309952

RESUMO

Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP's). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or -7 or BMP-2 and -7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of three human donors and tuber coxae of three equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay (ELISA). To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin (OSTN), osteocalcin (OCN), and runt-related transcription factor-2 (Runx2) were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation.


Assuntos
Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Adulto , Fosfatase Alcalina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 7/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Cavalos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteonectina/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA