Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731875

RESUMO

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Assuntos
Acrilamida , Cisteína , Iodoacetamida , Proteômica , Iodoacetamida/química , Alquilação , Cisteína/química , Cisteína/análise , Acrilamida/química , Acrilamida/análise , Humanos , Proteômica/métodos , Espectrometria de Massas/métodos , Marcação por Isótopo/métodos , Peptídeos/química , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos
2.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641547

RESUMO

A high-resolution HILIC-MS/MS method was developed to analyze anthranilic acid derivatives of N-glycans released from human serum alpha-1-acid glycoprotein (AGP). The method was applied to samples obtained from 18 patients suffering from high-risk malignant melanoma as well as 19 healthy individuals. It enabled the identification of 102 glycan isomers separating isomers that differ only in sialic acid linkage (α-2,3, α-2,6) or in fucose positions (core, antenna). Comparative assessment of the samples revealed that upregulation of certain fucosylated glycans and downregulation of their nonfucosylated counterparts occurred in cancer patients. An increased ratio of isomers with more α-2,6-linked sialic acids was also observed. Linear discriminant analysis (LDA) combining 10 variables with the highest discriminatory power was employed to categorize the samples based on their glycosylation pattern. The performance of the method was tested by cross-validation, resulting in an overall classification success rate of 96.7%. The approach presented here is significantly superior to serological marker S100B protein in terms of sensitivity and negative predictive power in the population studied. Therefore, it may effectively support the diagnosis of malignant melanoma as a biomarker.


Assuntos
Melanoma/sangue , Orosomucoide/metabolismo , Biomarcadores Tumorais/sangue , Cromatografia/métodos , Glicosilação , Humanos , Polissacarídeos/sangue , Espectrometria de Massas em Tandem/métodos , ortoaminobenzoatos/química
3.
Cancers (Basel) ; 12(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050543

RESUMO

Changes to bacterial metabolite-elicited signaling, in oncobiosis associated with breast cancer, plays a role in facilitating the progression of the disease. We show that indoxyl-sulfate (IS), a tryptophan metabolite, has cytostatic properties in models of breast cancer. IS supplementation, in concentrations corresponding to the human serum reference range, suppressed tumor infiltration to the surrounding tissues and metastasis formation in a murine model of breast cancer. In cellular models, IS suppressed NRF2 and induced iNOS, leading to induction of oxidative and nitrosative stress, and, consequently, reduction of cell proliferation; enhanced oxidative and nitrosative stress are crucial in the subsequent cytostasis. IS also suppressed epithelial-to-mesenchymal transition vital for suppressing cellular movement and diapedesis. Furthermore, IS rendered cells hypometabolic, leading to a reduction in aldehyde-dehydrogenase positive cells. Pharmacological inhibition of the pregnane-X receptor using CH223191 and the aryl-hydrocarbon receptor using ketoconazole diminished the IS-elicited effects, suggesting that these receptors were the major receptors of IS in these models. Finally, we showed that increased expression of the human enzymes that form IS (Cyp2E1, Sult1A1, and Sult1A2) is associated with better survival in breast cancer, an effect that is lost in triple negative cases. Taken together, IS, similar to indolepropionic acid (another tryptophan metabolite), has cytostatic properties and higher expression of the metabolic machinery responsible for the formation of IS supports survival in breast cancer.

4.
Cancers (Basel) ; 12(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854297

RESUMO

Oncobiotic transformation of the gut microbiome may contribute to the risk of breast cancer. Recent studies have provided evidence that the microbiome secretes cytostatic metabolites that inhibit the proliferation, movement, and metastasis formation of cancer cells. In this study, we show that indolepropionic acid (IPA), a bacterial tryptophan metabolite, has cytostatic properties. IPA selectively targeted breast cancer cells, but it had no effects on non-transformed, primary fibroblasts. In cell-based and animal experiments, we showed that IPA supplementation reduced the proportions of cancer stem cells and the proliferation, movement, and metastasis formation of cancer cells. These were achieved through inhibiting epithelial-to-mesenchymal transition, inducing oxidative and nitrosative stress, and boosting antitumor immune response. Increased oxidative/nitrosative stress was due to the IPA-mediated downregulation of nuclear factor erythroid 2-related factor 2 (NRF2), upregulation of inducible nitric oxide synthase (iNOS), and enhanced mitochondrial reactive species production. Increased oxidative/nitrosative stress led to cytostasis and reductions in cancer cell stem-ness. IPA exerted its effects through aryl hydrocarbon receptor (AHR) and pregnane X receptor (PXR) receptors. A higher expression of PXR and AHR supported better survival in human breast cancer patients, highlighting the importance of IPA-elicited pathways in cytostasis in breast cancer. Furthermore, AHR activation and PXR expression related inversely to cancer cell proliferation level and to the stage and grade of the tumor. The fecal microbiome's capacity for IPA biosynthesis was suppressed in women newly diagnosed with breast cancer, especially with stage 0. Bacterial indole biosynthesis showed correlation with lymphocyte infiltration to tumors in humans. Taken together, we found that IPA is a cytostatic bacterial metabolite, the production of which is suppressed in human breast cancer. Bacterial metabolites, among them, IPA, have a pivotal role in regulating the progression but not the initiation of the disease.

5.
Cancers (Basel) ; 12(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344895

RESUMO

Pancreatic adenocarcinoma is one of the most lethal cancers in both men and women, with a median five-year survival of around 5%. Therefore, pancreatic adenocarcinoma represents an unmet medical need. Neoplastic diseases, such as pancreatic adenocarcinoma, often are associated with microbiome dysbiosis, termed oncobiosis. In pancreatic adenocarcinoma, the oral, duodenal, ductal, and fecal microbiome become dysbiotic. Furthermore, the pancreas frequently becomes colonized (by Helicobacter pylori and Malassezia, among others). The oncobiomes from long- and short-term survivors of pancreatic adenocarcinoma are different and transplantation of the microbiome from long-term survivors into animal models of pancreatic adenocarcinoma prolongs survival. The oncobiome in pancreatic adenocarcinoma modulates the inflammatory processes that drive carcinogenesis. In this review, we point out that bacterial metabolites (short chain fatty acids, secondary bile acids, polyamines, indole-derivatives, etc.) also have a role in the microbiome-driven pathogenesis of pancreatic adenocarcinoma. Finally, we show that bacterial metabolism and the bacterial metabolome is largely dysregulated in pancreatic adenocarcinoma. The pathogenic role of additional metabolites and metabolic pathways will be identified in the near future, widening the scope of this therapeutically and diagnostically exploitable pathogenic pathway in pancreatic adenocarcinoma.

6.
Exp Dermatol ; 29(1): 79-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755591

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP1) is a pro-inflammatory protein, whose pro-inflammatory properties were demonstrated in human. The pro-inflammatory properties of PARP1 were shown in Th1- and Th2-mediated inflammatory pathologies, but not Th17-mediated inflammation. Thus, we studied the role of PARP1 in the imiquimod-induced model of psoriasis. To our surprise, in imiquimod-induced psoriasis, PARP1 acted as an anti-inflammatory factor and its genetic deletion exacerbated symptoms. We showed that in the absence of PARP1, the epidermis thickened and the number of TUNEL-positive cells decreased in the epidermis. These data indicate programmed cell death is decreased in keratinocytes. Changes in involucrin expression suggest that keratinocyte differentiation is hampered. Furthermore, epidermal expression of IL6 increased in the psoriasiform lesions of PARP1 knockout mice, suggesting that the inflammatory response is also derailed in the absence of PARP1. Finally, we showed that PARP1 expression is reduced in human psoriatic lesions compared with control skin samples. In imiquimod-treated HPV-KER keratinocytes, PARP inhibition recapitulated the in vivo findings, namely keratinocyte hyperproliferation; furthermore, the mRNA expression of psoriasis-associated cytokines (IL6, IL1ß, IL8, IL17 and IL23A) was also induced. The inhibition of TRPV1 abrogated the effects of the combined imiquimod + PARP inhibitor treatment.


Assuntos
Citocinas/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Psoríase/fisiopatologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Humanos , Imiquimode/farmacologia , Inflamação/genética , Interleucina-6/metabolismo , Queratinócitos , Masculino , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Psoríase/induzido quimicamente , Psoríase/patologia , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Canais de Cátion TRPV/antagonistas & inibidores , Células Th17
7.
Cancers (Basel) ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461945

RESUMO

In breast cancer patients, the diversity of the microbiome decreases, coinciding with decreased production of cytostatic bacterial metabolites like lithocholic acid (LCA). We hypothesized that LCA can modulate oxidative stress to exert cytostatic effects in breast cancer cells. Treatment of breast cancer cells with LCA decreased nuclear factor-2 (NRF2) expression and increased Kelch-like ECH associating protein 1 (KEAP1) expression via activation of Takeda G-protein coupled receptor (TGR5) and constitutive androstane receptor (CAR). Altered NRF2 and KEAP1 expression subsequently led to decreased expression of glutathione peroxidase 3 (GPX3), an antioxidant enzyme, and increased expression of inducible nitric oxide synthase (iNOS). The imbalance between the pro- and antioxidant enzymes increased cytostatic effects via increased levels of lipid and protein oxidation. These effects were reversed by the pharmacological induction of NRF2 with RA839, tBHQ, or by thiol antioxidants. The expression of key components of the LCA-elicited cytostatic pathway (iNOS and 4HNE) gradually decreased as the breast cancer stage advanced. The level of lipid peroxidation in tumors negatively correlated with the mitotic index. The overexpression of iNOS, nNOS, CAR, KEAP1, NOX4, and TGR5 or the downregulation of NRF2 correlated with better survival in breast cancer patients, except for triple negative cases. Taken together, LCA, a metabolite of the gut microbiome, elicits oxidative stress that slows down the proliferation of breast cancer cells. The LCA-oxidative stress protective pathway is lost as breast cancer progresses, and the loss correlates with poor prognosis.

9.
Sci Rep ; 9(1): 1300, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718646

RESUMO

Recent studies showed that changes to the gut microbiome alters the microbiome-derived metabolome, potentially promoting carcinogenesis in organs that are distal to the gut. In this study, we assessed the relationship between breast cancer and cadaverine biosynthesis. Cadaverine treatment of Balb/c female mice (500 nmol/kg p.o. q.d.) grafted with 4T1 breast cancer cells ameliorated the disease (lower mass and infiltration of the primary tumor, fewer metastases, and lower grade tumors). Cadaverine treatment of breast cancer cell lines corresponding to its serum reference range (100-800 nM) reverted endothelial-to-mesenchymal transition, inhibited cellular movement and invasion, moreover, rendered cells less stem cell-like through reducing mitochondrial oxidation. Trace amino acid receptors (TAARs), namely, TAAR1, TAAR8 and TAAR9 were instrumental in provoking the cadaverine-evoked effects. Early stage breast cancer patients, versus control women, had reduced abundance of the CadA and LdcC genes in fecal DNA, both responsible for bacterial cadaverine production. Moreover, we found low protein expression of E. coli LdcC in the feces of stage 1 breast cancer patients. In addition, higher expression of lysine decarboxylase resulted in a prolonged survival among early-stage breast cancer patients. Taken together, cadaverine production seems to be a regulator of early breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cadaverina/farmacologia , Microbiota , Receptores de Aminoácido/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Biológicos
10.
Eur J Cancer Prev ; 28(6): 544-550, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30399042

RESUMO

There is a great need for efficient and cost-effective melanoma screening, but this is not yet solved. Epidemiological studies on trends in melanoma incidence by tumour thickness, anatomical site and demographical data can help to improve public health efforts regarding earlier melanoma diagnosis. We aimed to study the trends in the incidence and characteristics of patients and their melanoma in North-East Hungary from 2000 to 2014. Data were obtained from a university hospital-based registry. A total of 1509 cutaneous invasive melanomas of 1464 patients were included in the study. A moderate but significant increase in incidence was observed in the region [average annual percentage change: 3.04 (0.07; 6.11); P = 0.045], with a breakpoint in 2007. From 2001 to 2007, the trend was increasing [APC: 9.84 (3.52; 16.55); P=0.006], but it stalled from 2007 [APC: -2.45 (-5.99; 1.23); P = 0.164]. However, in the age groups over the age of 60 years, where the standardised incidence was the highest, the incidence continued to rise. Furthermore, older age, male sex and trunk or lower extremity localization were found to be associated with thicker melanomas. Our results support that regular screening examination for melanoma would be desirable for people over the age of 60 years.


Assuntos
Melanoma/epidemiologia , Sistema de Registros/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Hungria/epidemiologia , Incidência , Masculino , Melanoma/classificação , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco
11.
Biochim Biophys Acta Bioenerg ; 1859(9): 958-974, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29655782

RESUMO

Our study aimed at finding a mechanistic relationship between the gut microbiome and breast cancer. Breast cancer cells are not in direct contact with these microbes, but disease could be influenced by bacterial metabolites including secondary bile acids that are exclusively synthesized by the microbiome and known to enter the human circulation. In murine and bench experiments, a secondary bile acid, lithocholic acid (LCA) in concentrations corresponding to its tissue reference concentrations (< 1 µM), reduced cancer cell proliferation (by 10-20%) and VEGF production (by 37%), aggressiveness and metastatic potential of primary tumors through inducing mesenchymal-to-epithelial transition, increased antitumor immune response, OXPHOS and the TCA cycle. Part of these effects was due to activation of TGR5 by LCA. Early stage breast cancer patients, versus control women, had reduced serum LCA levels, reduced chenodeoxycholic acid to LCA ratio, and reduced abundance of the baiH (7α/ß-hydroxysteroid dehydroxylase, the key enzyme in LCA generation) gene in fecal DNA, all suggesting reduced microbial generation of LCA in early breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Bactérias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Detergentes/farmacologia , Ácido Litocólico/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 11(2): e0150232, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919657

RESUMO

Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1ß or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Citostáticos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Metotrexato/farmacologia , Proteínas de Neoplasias/metabolismo , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/administração & dosagem , Aminoimidazol Carboxamida/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citostáticos/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Indução Enzimática/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1 , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Humanos , Lactatos/metabolismo , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metotrexato/administração & dosagem , Terapia de Alvo Molecular , Osteossarcoma/patologia , Interferência de RNA , Ribonucleotídeos/administração & dosagem , Fatores de Transcrição/antagonistas & inibidores
13.
Biochim Biophys Acta ; 1842(4): 594-602, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24365238

RESUMO

Poly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme. However, recent investigations have attributed unique roles to PARP-2 in metabolic regulation in the liver. We assessed changes in hepatic lipid homeostasis upon the deletion of PARP-2 and found that cholesterol levels were higher in PARP-2(-/-) mice as compared to wild-type littermates. To uncover the molecular background, we analyzed changes in steady-state mRNA levels upon the knockdown of PARP-2 in HepG2 cells and in murine liver that revealed higher expression of sterol-regulatory element binding protein (SREBP)-1 dependent genes. We demonstrated that PARP-2 is a suppressor of the SREBP1 promoter, and the suppression of the SREBP1 gene depends on the enzymatic activation of PARP-2. Consequently, the knockdown of PARP-2 enhances SREBP1 expression that in turn induces the genes driven by SREBP1 culminating in higher hepatic cholesterol content. We did not detect hypercholesterolemia, higher fecal cholesterol content or increase in serum LDL, although serum HDL levels decreased in the PARP-2(-/-) mice. In cells and mice where PARP-2 was deleted we observed decreased ABCA1 mRNA and protein expression that is probably linked to lower HDL levels. In our current study we show that PARP-2 impacts on hepatic and systemic cholesterol homeostasis. Furthermore, the depletion of PARP-2 leads to lower HDL levels which represent a risk factor to cardiovascular diseases.


Assuntos
Colesterol/metabolismo , Lipoproteínas HDL/sangue , Fígado/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Células Hep G2 , Humanos , Masculino , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia
14.
Cell Mol Life Sci ; 69(24): 4079-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22581363

RESUMO

Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP family and PARP-2 is responsible for 5-15 % of total cellular PARP activity. PARP-2 was originally described in connection to DNA repair and in physiological and pathophysiological processes associated with genome maintenance (e.g., centromere and telomere protection, spermiogenesis, thymopoiesis, azoospermia, and tumorigenesis). Recent reports have identified important rearrangements in gene expression upon the knockout of PARP-2. Such rearrangements heavily impact inflammation and metabolism. Metabolic effects are mediated through modifying PPARγ and SIRT1 function. Altered gene expression gives rise to a complex phenotype characterized primarily by enhanced mitochondrial activity that results both in beneficial (loss of fat, enhanced insulin sensitivity) and in disadvantageous (pancreatic beta cell hypofunction upon high fat feeding) consequences. Enhanced mitochondrial biogenesis provides protection in oxidative stress-related diseases. Hereby, we review the recent developments in PARP-2 research with special attention to the involvement of PARP-2 in transcriptional and metabolic regulation.


Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerases/fisiologia , Transcrição Gênica , Animais , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Camundongos , Modelos Genéticos , Estresse Oxidativo/genética , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Estrutura Terciária de Proteína , Sirtuína 1/metabolismo , Sirtuína 1/fisiologia , Espermatogênese/genética
15.
Cardiovasc Res ; 92(3): 430-8, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21921080

RESUMO

AIMS: Doxorubicin (DOX) is widely used in cytostatic treatments, although it may cause cardiovascular dysfunction as a side effect. DOX treatment leads to enhanced free radical production that in turn causes DNA strand breakage culminating in poly(ADP-ribose) polymerase (PARP) activation and mitochondrial and cellular dysfunction. DNA nicks can activate numerous enzymes, such as PARP-2. Depletion of PARP-2 has been shown to result in a protective phenotype against free radical-mediated diseases, suggesting similar properties in the case of DOX-induced vascular damage. METHODS AND RESULTS: PARP-2(+/+) and PARP-2(-/-) mice and aortic smooth muscle (MOVAS) cells were treated with DOX (25 mg/kg or 3 µM, respectively). Aortas were harvested 2-day post-treatment while MOVAS cells were treated with DOX for 7 hours. Aortas from PARP-2(-/-) mice displayed partial protection against DOX toxicity, and the protection depended on the conservation of smooth muscle but not on the conservation of endothelial function. DOX treatment evoked free radical production, DNA breakage and PARP activation. Importantly, depletion of PARP-2 did not quench any of these phenomena, suggesting an alternative mechanism. Depletion of PARP-2 prevented DOX-induced mitochondrial dysfunction through SIRT1 activation. Genetic deletion of PARP-2 resulted in the induction of the SIRT1 promoter and consequently increased SIRT1 expression both in aortas and in MOVAS cells. SIRT1 activation enhanced mitochondrial biogenesis, which provided protection against DOX-induced mitochondrial damage. CONCLUSION: Our data identify PARP-2 as a mediator of DOX toxicity by regulating vascular SIRT1 activity and mitochondrial biogenesis. Moreover, to the best of our knowledge, this is the first report of SIRT1 as a protective factor in the vasculature upon oxidative stress.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/deficiência , Sirtuína 1/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Células Cultivadas , Citoproteção , Dano ao DNA , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Fatores de Tempo , Transfecção , Regulação para Cima , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
16.
Cell Metab ; 13(4): 461-468, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21459330

RESUMO

SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show that the deletion of the poly(ADP-ribose) polymerase-1 (PARP-1) gene, encoding a major NAD(+)-consuming enzyme, increases NAD(+) content and SIRT1 activity in brown adipose tissue and muscle. PARP-1(-/-) mice phenocopied many aspects of SIRT1 activation, such as a higher mitochondrial content, increased energy expenditure, and protection against metabolic disease. Also, the pharmacologic inhibition of PARP in vitro and in vivo increased NAD(+) content and SIRT1 activity and enhanced oxidative metabolism. These data show how PARP-1 inhibition has strong metabolic implications through the modulation of SIRT1 activity, a property that could be useful in the management not only of metabolic diseases, but also of cancer.


Assuntos
Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuína 1/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , NAD/metabolismo , Estresse Oxidativo , Fenótipo , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Interferência de RNA , RNA Interferente Pequeno , Sirtuína 1/genética
17.
Cell Metab ; 13(4): 450-460, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21459329

RESUMO

SIRT1 is a NAD(+)-dependent enzyme that affects metabolism by deacetylating key transcriptional regulators of energy expenditure. Here, we tested whether deletion of PARP-2, an alternative NAD(+)-consuming enzyme, impacts on NAD(+) bioavailability and SIRT1 activity. Our results indicate that PARP-2 deficiency increases SIRT1 activity in cultured myotubes. However, this increase was not due to changes in NAD(+) levels, but to an increase in SIRT1 expression, as PARP-2 acts as a direct negative regulator of the SIRT1 promoter. PARP-2 deletion in mice increases SIRT1 levels, promotes energy expenditure, and increases mitochondrial content. Furthermore, PARP-2(-/-) mice were protected against diet-induced obesity. Despite being insulin sensitized, PARP-2(-/-) mice were glucose intolerant due to a defective pancreatic function. Hence, while inhibition of PARP activity promotes oxidative metabolism through SIRT1 activation, the use of PARP inhibitors for metabolic purposes will require further understanding of the specific functions of different PARP family members.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuína 1/metabolismo , Animais , Linhagem Celular , Gorduras na Dieta/farmacologia , Metabolismo Energético , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Intolerância à Glucose , Humanos , Resistência à Insulina , Camundongos , Camundongos Knockout , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Sirtuína 1/genética
18.
Exp Dermatol ; 17(8): 659-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18312389

RESUMO

Titanium dioxide (TiO2) nanoparticles are ubiquitously used materials in everyday life (e.g. paints,household products and plastic goods). However, despite the wide array of common applications, their pathogenetic role was also suggested under certain conditions (e.g. pulmonary neoplasias and lung fibrosis). From a dermatological point of view, it is also of great importance that TiO2 also serves as a physical photoprotective agent in sunscreens and is widely used in various cosmetic products. However, the effect of TiO2 on human cutaneous functions is still unknown. Therefore, in the current study, we investigated the in vivo penetration of TiO2 via human skin transplanted to immunodeficient mice and,furthermore, we measured the in vitro effects of nanoparticles on various functional properties of numerous epidermal and dermal cells in culture. Hereby, using various nuclear microscopy methods, we provide the first evidence that TiO2nanoparticles in vivo do not penetrate through the intact epidermal barrier. However, we also report that TiO2, when exposed directly to cell cultures in vitro, exerts significant and cell-type dependent effects on such cellular functions as viability, proliferation, apoptosis and differentiation. Therefore, our novel findings will hopefully inspire one to systemically explore in future, clinically oriented trials whether there is indeed a risk from micronized TiO2-containing products on skin with an impaired stratum corneum barrier function.


Assuntos
Pele/efeitos dos fármacos , Pele/metabolismo , Titânio/farmacologia , Titânio/farmacocinética , Administração Tópica , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos SCID , Pele/citologia , Transplante de Pele , Protetores Solares/administração & dosagem , Protetores Solares/farmacocinética , Protetores Solares/farmacologia , Protetores Solares/toxicidade , Titânio/administração & dosagem , Titânio/toxicidade , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA