Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(2): 950-967, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34811634

RESUMO

We aimed to investigate the effects of endurance training on expression of growth factors (GFs) and stimulation of neurotrophin-dependent signaling pathways (PI3k/Akt, PLCγ/PKC, PLCγ/CAMKII, Ras-Erk1/2 and Rac1-Cdc42) responsible for neuroplasticity, neuroregeneration, survival and growth after spinal cord injury (SCI). Wistar rats were divided into four groups: (i) intact controls; (ii) 6 weeks of endurance training; (iii) SCI; (iv) pre-training + SCI. The animals survived for 6 weeks after SCI. Firstly, endurance training markedly upregulated mRNA expression and protein levels (up to four times) of growth factors (BDNF, GDNF) and their receptors (TrkB, Gfrα) in low thoracic segments (Th8-Th10) compared to levels in untrained animals. Secondly, we found that spontaneous neuroplasticity seen in the SCI alone group was GF-specific and was activated through both PLCγ-PKC and PLC-CAMKII signaling pathways. In addition, training prior to SCI markedly increased the activity of PLCγ-PKC signaling at both transcript and protein levels at and around the lesion site. Similar effects were seen in expression of PI3k/Akt and Ras/Erk1/2 signaling responsible for cell survival and regeneration. Thirdly, rats which underwent physical activity prior to SCI were more active and had significantly better neurological scores at the 14th and 42nd days of survival. These results suggest that regular physical activity could play an important role after SCI, as it maintains increased expression of GFs in spinal cord tissue 6 weeks post-SCI. The BDNF- and/or BDNF + GDNF-dependent signaling pathways were significantly affected in pre-trained SCI animals. In contrast, GDNF-dependent Rac1-Cdc42 signaling was not involved in training-affected SCI response.


Assuntos
Treino Aeróbico , Transdução de Sinais , Traumatismos da Medula Espinal , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Recuperação de Função Fisiológica , Transdução de Sinais/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA