Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Rev Immunol ; 23(2): 90-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35637393

RESUMO

Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/terapia , Linfócitos T , Imunoterapia
2.
Elife ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617021

RESUMO

Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Sequências Reguladoras de Ácido Nucleico , Alelos , Animais , Cromossomos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Camundongos
3.
J Immunol ; 197(10): 4127-4136, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798146

RESUMO

Many NK cells express inhibitory receptors that bind self-MHC class I (MHC I) molecules and prevent killing of self-cells, while enabling killing of MHC I-deficient cells. But tolerance also occurs for NK cells that lack inhibitory receptors for self-MHC I, and for all NK cells in MHC I-deficient animals. In both cases, NK cells are unresponsive to MHC I-deficient cells and hyporesponsive when stimulated through activating receptors, suggesting that hyporesponsiveness is responsible for self-tolerance. We generated irradiation chimeras, or carried out adoptive transfers, with wild-type (WT) and/or MHC I-deficient hematopoietic cells in WT or MHC I-deficient C57BL/6 host mice. Unexpectedly, in WT hosts, donor MHC I-deficient hematopoietic cells failed to induce hyporesponsiveness to activating receptor stimulation, but did induce tolerance to MHC I-deficient grafts. Therefore, these two properties of NK cells are separable. Both tolerance and hyporesponsiveness occurred when the host was MHC I deficient. Interestingly, infections of mice or exposure to inflammatory cytokines reversed the tolerance of NK cells that was induced by MHC I-deficient hematopoietic cells, but not the tolerance induced by MHC I-deficient nonhematopoietic cells. These data have implications for successful bone marrow transplantation, and suggest that tolerance induced by hematopoietic cells versus nonhematopoietic cells may be imposed by distinct mechanisms.


Assuntos
Tolerância Imunológica , Células Matadoras Naturais/imunologia , Tolerância a Antígenos Próprios , Transferência Adotiva , Animais , Transplante de Medula Óssea , Citocinas , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/classificação , Células Matadoras Naturais/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Quimera por Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA