Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Nutr ; 63(4): 1163-1175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358514

RESUMO

PURPOSE: The present study aimed at evaluating possible synergistic effects between two risk factors for cognitive decline and neurodegenerative disorders, i.e. iron overload and exposure to a hypercaloric/hyperlipidic diet, on cognition, insulin resistance, and hippocampal GLUT1, GLUT3, Insr mRNA expression, and AKT phosporylation. METHODS: Male Wistar rats were treated with iron (30 mg/kg carbonyl iron) or vehicle (5% sorbitol in water) from 12 to 14th post-natal days. Iron-treated rats received a standard laboratory diet or a high fat diet from weaning to adulthood (9 months of age). Recognition and emotional memory, peripheral blood glucose and insulin levels were evaluated. Glucose transporters (GLUT 1 and GLUT3) and insulin signaling were analyzed in the hippocampus of rats. RESULTS: Both iron overload and exposure to a high fat diet induced memory deficits. Remarkably, the association of iron with the high fat diet induced more severe cognitive deficits. Iron overload in the neonatal period induced higher insulin levels associated with significantly higher HOMA-IR, an index of insulin resistance. Long-term exposure to a high fat diet resulted in higher fasting glucose levels. Iron treatment induced changes in Insr and GLUT1 expression in the hippocampus. At the level of intracellular signaling, both iron treatment and the high fat diet decreased AKT phosphorylation. CONCLUSION: The combination of iron overload with exposure to a high fat diet only led to synergistic deleterious effect on emotional memory, while the effects induced by iron and by the high fat diet on AKT phosphorylation were comparable. These findings indicate that there is, at least to some extent, an additive effect of iron combined with the diet. Further studies investigating the mechanisms associated to deleterious effects on cognition and susceptibility for the development of age-associated neurodegenerative disorders are warranted.


Assuntos
Animais Recém-Nascidos , Dieta Hiperlipídica , Transportador de Glucose Tipo 1 , Hipocampo , Resistência à Insulina , Sobrecarga de Ferro , Transtornos da Memória , Ratos Wistar , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Transtornos da Memória/etiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ratos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicemia/metabolismo , Insulina/sangue , Transdução de Sinais
2.
Purinergic Signal ; 18(4): 481-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35939198

RESUMO

Glioblastoma (GBM) is the most aggressive and lethal among the primary brain tumors, with a low survival rate and resistance to radio and chemotherapy. The P2Y12 is an adenosine diphosphate (ADP) purinergic chemoreceptor, found mainly in platelets. In cancer cells, its activation has been described to induce proliferation and metastasis. Bearing in mind the need to find new treatments for GBM, this study aimed to investigate the role of the P2Y12R in the proliferation and migration of GBM cells, as well as to evaluate the expression of this receptor in patients' data obtained from the TCGA data bank. Here, we used the P2Y12R antagonist, ticagrelor, which belongs to the antiplatelet agent's class. The different GBM cells (cell line and patient-derived cells) were treated with ticagrelor, with the agonist, ADP, or both, and the effects on cell proliferation, colony formation, ADP hydrolysis, cell cycle and death, migration, and cell adhesion were analyzed. The results showed that ticagrelor decreased the viability and the proliferation of GBM cells. P2Y12R antagonism also reduced colony formation and migration potentials, with alterations on the expression of metalloproteinases, and induced autophagy in GBM cells. Changes were observed at the cell cycle level, and only the U251 cell line showed a significant reduction in the ADP hydrolysis profile. TCGA data analysis showed a higher expression of P2Y12R in gliomas samples when compared to the other tumors. These data demonstrate the importance of the P2Y12 receptor in gliomas development and reinforce its potential as a pharmacological target for glioma treatment.


Assuntos
Glioblastoma , Humanos , Ticagrelor/metabolismo , Ticagrelor/farmacologia , Difosfato de Adenosina/metabolismo , Glioblastoma/tratamento farmacológico , Plaquetas , Autofagia , Proliferação de Células , Receptores Purinérgicos P2Y12/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-35843370

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder, characterized by motor dysfunction, psychiatric disturbance, and cognitive decline. In the early stage of HD, occurs a decrease in dopamine D2 receptors and adenosine A2A receptors (A2AR), while in the late stage also occurs a decrease in dopamine D1 receptors and adenosine A1 receptors (A1R). Adenosine exhibits neuromodulatory and neuroprotective effects in the brain and is involved in motor control and memory function. 3-Nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce HD behavioral phenotypes and biochemical characteristics. This study investigated the effects of acute exposure to CPA (A1R agonist), CGS 21680 (A2AR agonist), caffeine (non-selective of A1R and A2AR antagonist), ZM 241385 (A2AR antagonist), DPCPX (A1R antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in an HD pharmacological model induced by 3-NPA in adult zebrafish. CPA, CGS 21680, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered via i.p. in zebrafish after 3-NPA (at dose 60 mg/kg) chronic treatment. Caffeine and ZM 241385 reversed the bradykinesia induced by 3-NPA, while CGS 21680 potentiated the bradykinesia caused by 3-NPA. Moreover, CPA, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA reversed the 3-NPA-induced memory impairment. Together, these data support the hypothesis that A2AR antagonists have an essential role in modulating locomotor function, whereas the activation of A1R and blockade of A2AR and A1R and modulation of adenosine levels may reduce the memory impairment, which could be a potential pharmacological strategy against late-stage symptoms HD.


Assuntos
Cafeína , Peixe-Zebra , Adenosina/farmacologia , Animais , Cafeína/farmacologia , Dipiridamol/farmacologia , Dopamina , Hipocinesia , Nitrocompostos , Propionatos , Receptor A2A de Adenosina/genética
4.
Biochem Biophys Res Commun ; 601: 24-30, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35220010

RESUMO

Glioblastoma (GBM) is the most lethal among malignant gliomas. The tumor invasiveness and therapy-resistance are important clinical hallmarks. Growing evidence emphasizes the purinergic signaling contributing to tumor growth. Here we exposed a potential role of extracellular ATPase activity as a key regulator of temozolomide cytotoxicity and the migration process in GBM cells. The inhibition of ATP hydrolysis was able to improve the impact of temozolomide, causing arrest mainly in S and G2 phases of the cell cycle, leading M059J and U251 cells to apoptosis. In addition to eradicating GBM cells, ATP hydrolysis exhibited a potential to modulate the invasive phenotype and the expression of proteins involved in cell migration and epithelial-to-mesenchymal-like transition in a 3D culture model. Finally, we suggest the ATPase activity as a key target to decline temozolomide resistance and the migratory phenotype in GBM cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Humanos , Hidrólise , Fenótipo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
5.
Eur J Nutr ; 60(7): 3679-3690, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33738535

RESUMO

PURPOSE: To investigate the effects of lipoic acid (LA) supplementation during adulthood combined with supplementation later in life or LA administration only at old age on age-induced cognitive dysfunction, mitochondrial DNA deletions, caspase 3 and antioxidant response enzymes expression in iron-treated rats. METHODS: Male rats were submitted to iron treatment (30 mg/kg body wt of Carbonyl iron) from 12 to 14th post-natal days. Iron-treated rats received LA supplementation (50 mg/kg, daily) in adulthood and old age or at old age only for 21 days. Memory, mitochondrial DNA (mtDNA) complex I deletions, caspase 3 mRNA expression and antioxidant response enzymes mRNA expression were analyzed in the hippocampus. RESULTS: LA administration in adulthood combined with treatment later in life was able to reverse age-induced effects on object recognition and inhibitory avoidance memory, as well as on mtDNA deletions, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, and antioxidant enzymes disruption induced by iron in aged rats. LA treatment only at old age reversed iron-induced effects to a lesser extent when compared to the combined treatment. CONCLUSION: The present findings support the view that LA supplementation may be considered as an adjuvant against mitochondrial damage and cognitive decline related to aging and neurodegenerative disorders.


Assuntos
Ácido Tióctico , Animais , Antioxidantes , DNA Mitocondrial , Suplementos Nutricionais , Ferro , Masculino , Ratos
6.
Stem Cells Dev ; 29(23): 1479-1496, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32988295

RESUMO

The regenerative effects of stem cells derived from dental tissues have been previously investigated. This study assessed the potential of human tooth stem cells from apical papilla (SCAP) on nerve regeneration. The SCAP collected from nine individuals were characterized and polarized by exposure to interferon-γ (IFN-γ). IFN-γ increased kynurenine and interleukin-6 (IL-6) production by SCAP, without affecting the cell viability. IFN-γ-primed SCAP exhibited a decrease of brain-derived neurotrophic factor (BDNF) mRNA levels, followed by an upregulation of glial cell-derived neurotrophic factor mRNA. Ex vivo, the co-culture of SCAP with neurons isolated from the rat dorsal root ganglion induced neurite outgrowth, accompanied by increased BDNF secretion, irrespective of IFN-γ priming. In vivo, the local application of SCAP reduced the mechanical and thermal hypersensitivity in Wistar rats that had been submitted to sciatic chronic constriction injury. The SCAP also reduced the pain scores, according to the evaluation of the Grimace scale, partially restoring the myelin damage and BDNF immunopositivity secondary to nerve lesion. Altogether, our results provide novel evidence about the regenerative effects of human SCAP, indicating their potential to handle nerve injury-related complications.


Assuntos
Papila Dentária/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa/fisiologia , Adolescente , Animais , Diferenciação Celular , Polaridade Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Doença Crônica , Constrição Patológica , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interferon gama/farmacologia , Masculino , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
7.
Biometals ; 31(6): 927-940, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117045

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a key role in neural development and physiology, as well as in pathological states. Post-mortem studies demonstrate that BDNF is reduced in the brains of patients affected by neurodegenerative diseases. Iron accumulation has also been associated to the pathogenesis of neurodegenerative diseases. In rats, iron overload induces persistent memory deficits, increases oxidative stress and apoptotic markers, and decreases the expression of the synaptic marker, synaptophysin. Deferiprone (DFP) is an oral iron chelator used for the treatment of systemic iron overload disorders, and has recently been tested for Parkinson's disease. Here, we investigated the effects of iron overload on BDNF levels and on mRNA expression of genes encoding TrkB, p75NTR, catalase (CAT) and NQO1. We also aimed at investigating the effects of DFP on iron-induced impairments. Rats received iron or vehicle at postnatal days 12-14 and when adults, received chronic DFP or water (vehicle). Recognition memory was tested 19 days after the beginning of chelation therapy. BDNF measurements and expression analyses in the hippocampus were performed 24 h after the last day of DFP treatment. DFP restored memory and increased hippocampal BDNF levels, ameliorating iron-induced effects. Iron overload in the neonatal period reduced, while treatment with DFP was able to rescue, the expression of antioxidant enzymes CAT and NQO1.


Assuntos
Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Deferiprona/farmacologia , Modelos Animais de Doenças , Quelantes de Ferro/farmacologia , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/química , Fator Neurotrófico Derivado do Encéfalo/análise , Deferiprona/química , Feminino , Hipocampo/efeitos dos fármacos , Quelantes de Ferro/química , Ratos , Ratos Wistar
8.
Brain Res Bull ; 139: 1-8, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29374603

RESUMO

Evidence has demonstrated iron accumulation in specific brain regions of patients suffering from neurodegenerative disorders, and this metal has been recognized as a contributing factor for neurodegeneration. Using an experimental model of brain iron accumulation, we have shown that iron induces severe memory deficits that are accompanied by oxidative stress, increased apoptotic markers, and decreased synaptophysin in the hippocampus of rats. The present study aims to characterize iron loading effects as well as to determine the molecular targets of cannabidiol (CBD), the main non-psychomimetic compound of Cannabis sativa, on mitochondria. Rats received iron in the neonatal period and CBD for 14 days in adulthood. Iron induced mitochondrial DNA (mtDNA) deletions, decreased epigenetic modulation of mtDNA, mitochondrial ferritin levels, and succinate dehydrogenase activity. CBD rescued mitochondrial ferritin and epigenetic modulation of mtDNA, and restored succinate dehydrogenase activity in iron-treated rats. These findings provide new insights into molecular targets of iron neurotoxicity and give support for the use of CBD as a disease modifying agent in the treatment of neurodegenerative diseases.


Assuntos
Canabidiol/uso terapêutico , DNA Mitocondrial/metabolismo , Hipocampo/efeitos dos fármacos , Compostos Carbonílicos de Ferro/toxicidade , Mitocôndrias/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Animais Recém-Nascidos , Creatina Quinase/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Doenças Neurodegenerativas/patologia , Gravidez , Ratos , Ratos Wistar
9.
Artigo em Inglês | MEDLINE | ID: mdl-28163255

RESUMO

This study investigated the effects of caffeine in the behavioral and inflammatory alterations caused by copper in zebrafish larvae, attempting to correlate these changes with the modulation of adenosine receptors. To perform a survival curve, 7dpf larvae were exposed to 10µM CuSO4, combined to different concentrations of caffeine (100µM, 500µM and 1mM) for up to 24h. The treatment with copper showed lower survival rates only when combined with 500µM and 1mM of caffeine. We selected 4 and 24h as treatment time-points. The behavior evaluation was done by analyzing the traveled distance, the number of entries in the center, and the length of permanence in the center and the periphery of the well. The exposure to 10µM CuSO4 plus 500µM caffeine at 4 and 24h changed the behavioral parameters. To study the inflammatory effects of caffeine, we assessed the PGE2 levels by using UHPLC-MS/MS, and TNF, COX-2, IL-6 and IL-10 gene expression by RT-qPCR. The expression of adenosine receptors was also evaluated with RT-qPCR. When combined to copper, caffeine altered inflammatory markers depending on the time of exposure. Adenosine receptors expression was significantly increased, especially after 4h exposure to copper and caffeine together or separately. Our results demonstrated that caffeine enhances the inflammation induced by copper by decreasing animal survival, altering inflammatory markers and promoting behavioral changes in zebrafish larvae. We also conclude that alterations in adenosine receptors are related to those effects.


Assuntos
Cafeína/efeitos adversos , Cobre/toxicidade , Larva/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/efeitos adversos , Receptores Purinérgicos P1/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Cafeína/agonistas , Cafeína/antagonistas & inibidores , Cobre/agonistas , Cobre/química , Sulfato de Cobre/administração & dosagem , Dinoprostona/agonistas , Dinoprostona/antagonistas & inibidores , Dinoprostona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/metabolismo , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/metabolismo , Concentração Osmolar , Agonistas do Receptor Purinérgico P1/química , Agonistas do Receptor Purinérgico P1/toxicidade , Antagonistas de Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética , Análise de Sobrevida , Poluentes Químicos da Água/agonistas , Poluentes Químicos da Água/antagonistas & inibidores , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/agonistas , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Mol Neurobiol ; 54(5): 3542-3553, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189619

RESUMO

Autism is a neurodevelopmental disorder characterized by symptoms related to stereotyped movements, deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Evidence indicates an important role of extracellular ATP and adenosine as signaling molecules in autism. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering zebrafish is an animal model that may contribute towards to understanding the mechanisms that underlie social behavior, we investigated the purinergic signaling in a model of embryological exposure to valproic acid (VPA) that induces social interaction deficit in adult zebrafish. We demonstrated embryological exposure to VPA did not change ATP and ADP hydrolysis in zebrafish at 120 dpf, and the cytosolic (soluble) ADA activity was not altered. However, we observed an increase of AMP hydrolysis (12.5 %) whereas the ecto-ADA activity was decreased (19.2 %) in adult zebrafish submitted to embryological exposure to VPA. Quantitative reverse transcription PCR (RT-PCR) analysis showed changes on ntpd8, ADA 2.1, and A2a1 mRNA transcript levels. Brain ATP metabolism showed a rapid catabolism of ATP and ADP, whereas the extracellular metabolism of AMP and adenosine (ADO) occurred slowly. We demonstrated that embryological exposure to VPA altered biochemical and molecular parameters related to purinergic system in adult zebrafish. These findings indicate that the enzyme activities involved in the control of ATP and adenosine levels may be involved in the pathophysiological mechanisms of diseases related to the impairment of social interaction, such as autism.


Assuntos
Envelhecimento/metabolismo , Embrião não Mamífero/metabolismo , Espaço Extracelular/metabolismo , Nucleotídeos/metabolismo , Ácido Valproico/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Encéfalo/enzimologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrólise , Solubilidade , Peixe-Zebra/genética
11.
J Nutr Biochem ; 38: 145-153, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736734

RESUMO

We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia.


Assuntos
Cafeína/uso terapêutico , Córtex Cerebral/metabolismo , Ácido Clorogênico/uso terapêutico , Diabetes Mellitus Experimental/dietoterapia , Neuropatias Diabéticas/prevenção & controle , Suplementos Nutricionais , Fármacos Neuroprotetores/uso terapêutico , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Plaquetas/enzimologia , Plaquetas/metabolismo , Córtex Cerebral/enzimologia , Café , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrólise , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neuroproteção , Agregação Plaquetária , Purinérgicos/uso terapêutico , Ratos Wistar , Sinaptossomos/enzimologia , Sinaptossomos/metabolismo
12.
Purinergic Signal ; 12(2): 211-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26769247

RESUMO

Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Trifosfatases/metabolismo , Encéfalo/enzimologia , Hiperglicemia/enzimologia , Receptores Purinérgicos P1/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Masculino , Reação em Cadeia da Polimerase , Transcriptoma , Peixe-Zebra
13.
Mol Neurobiol ; 53(9): 6228-6239, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558634

RESUMO

Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome ß-1, ß-2, and ß-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits ß1 and ß5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.


Assuntos
Hipocampo/metabolismo , Ferro/farmacologia , Memória , Proteínas Ubiquitinadas/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos Wistar
14.
Mem Inst Oswaldo Cruz ; 110(2): 201-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25946243

RESUMO

Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5'-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5'-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.


Assuntos
Hemina/química , Hemoglobinas/química , Ferro/fisiologia , Nucleotídeos/metabolismo , Trichomonas vaginalis/enzimologia , 5'-Nucleotidase/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura de Células , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrólise , Ferro/administração & dosagem , Masculino , RNA de Protozoário , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tricomoníase/enzimologia , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/crescimento & desenvolvimento
15.
Reprod Toxicol ; 53: 82-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883026

RESUMO

The effects of ethanol exposure on extracellular adenosine sources in zebrafish were evaluated. In the acute treatment, the embryos were exposed to 2% ethanol on day 1 post-fertilization (dpf). In the chronic treatment, the exposure was continued for 2h/day up to 6 dpf. Ecto-5'-nucleotidase activity was assessed by colorimetric method and gene expression determined by RT-qPCR in 7 dpf zebrafish. Body length, ocular distance and surface area of the eyes were registered in animals acutely exposed to ethanol and pretreated with AOPCP (5-500 nM), an ecto-5'-nucleotidase inhibitor, or dipyridamole (10-100 µM), a blocker of nucleoside transport. Both ethanol exposures promoted increased ecto-5'-nucleotidase activity, impaired locomotion and morphology. Ecto-5'-nucleotidase expression was not affected. AOPCP promoted mild prevention of morphological defects caused by acute treatment, while dipyridamole worsened these defects. Early ethanol exposure altered adenosinergic tonus, especially through nucleoside transporters, contributing to morphological defects produced by ethanol in zebrafish.


Assuntos
5'-Nucleotidase/metabolismo , Difosfato de Adenosina/análogos & derivados , Etanol/toxicidade , Larva/efeitos dos fármacos , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Difosfato de Adenosina/farmacologia , Animais , Dipiridamol/farmacologia , Larva/anatomia & histologia , Larva/fisiologia , Atividade Motora/efeitos dos fármacos , Peixe-Zebra/anormalidades , Peixe-Zebra/fisiologia
16.
Mem. Inst. Oswaldo Cruz ; 110(2): 201-208, 04/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-744468

RESUMO

Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.


Assuntos
Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/patologia , Terapias Complementares , Doença de Alzheimer/terapia , Progressão da Doença , Estudos de Viabilidade
17.
J Neural Transm (Vienna) ; 122(8): 1077-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25772464

RESUMO

Anxiety is characterized by unpleasant bodily sensations, such as pounding heart and intense fear. The therapy involves the administration of benzodiazepine drugs. Purinergic signaling participates in the induction of several behavioral patterns and their actions are inactivated by ectonucleotidases and adenosine deaminase (ADA). Since there is evidence about the involvement of purinergic system in the actions mediated by benzodiazepines, we evaluated the effects in vitro and in vivo of administration of diazepam and midazolam on nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, and ADA activities in zebrafish brain, followed by the analysis of gene expression pattern of these enzymes and adenosine receptors (A1, A2a1, A2a2, A2b). The in vitro studies demonstrated that diazepam decreased ATP (66 % for 500 µM) and ADP hydrolysis (40-54 % for 10-500 µM, respectively). Midazolam decreased ATP (16-71 % for 10-500 µM, respectively) and ADP (48-73.5 % for 250-500 µM, respectively) hydrolysis as well as the ecto-ADA activity (26-27.5 % for 10-500 µM, respectively). AMP hydrolysis was decreased in animals treated with of 0.5 and 1 mg/L midazolam (32 and 36 %, respectively). Diazepam and midazolam decreased the ecto-ADA activity at 1.25 mg/L and 1 mg/L (31 and 33 %, respectively), but only 0.1 mg/L midazolam induced an increase (40 %) in cytosolic ADA. The gene expression analysis demonstrated changes on ecto-5'-nucleotidase, A1, A2a1, A2a2, and A2b mRNA transcript levels after acute treatment with benzodiazepines. These findings demonstrated that benzodiazepine exposure induces a modulation of extracellular nucleotide and nucleoside metabolism, suggesting the purinergic signaling may be, at least in part, related to benzodiazepine effects.


Assuntos
Ansiolíticos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diazepam/farmacologia , Midazolam/farmacologia , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Modelos Animais , RNA Mensageiro/metabolismo , Receptores Purinérgicos P1/metabolismo , Peixe-Zebra
18.
Zebrafish ; 12(2): 127-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25560904

RESUMO

Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5'nucleotidase inhibitor adenosine 5'-(α,ß-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5'-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish.


Assuntos
Adenosina/metabolismo , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra , Adenina/análogos & derivados , Adenina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Compostos de Benzil/farmacologia , Convulsivantes/toxicidade , Dipiridamol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/genética , Genes fos/fisiologia , Fenetilaminas/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Convulsões/metabolismo , Tioinosina/análogos & derivados , Tioinosina/farmacologia , Xantinas/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-24704546

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH2) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH2 doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significantly higher level of ferric iron in the brains and induction of casp8, casp 9 and jun genes. Taken together, these findings suggest acute brain toxicity by the inhibition of acetylcholinesterase and induction of apoptosis.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Dextranos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Dextranos/administração & dosagem , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Ferro/análise , Ferro/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas , Tamanho da Partícula , Peixe-Zebra
20.
Parasitology ; 141(2): 241-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24135238

RESUMO

Tritrichomonas foetus is a protist that causes bovine trichomoniasis and presents a well-developed Golgi. There are very few studies concerning the Golgi in trichomonads. In this work, monoclonal antibodies were raised against Golgi of T. foetus and used as a tool on morphologic and biochemical studies of this organelle. Among the antibodies produced, one was named mAb anti-Golgi 20.3, which recognized specifically the Golgi complex by fluorescence and electron microscopy. By immunoblotting this antibody recognized two proteins with 60 and 66 kDa that were identified as putative beta-tubulin and adenosine triphosphatase, respectively. The mAb 20.3 also recognized the Golgi complex of the Trichomonas vaginalis, a human parasite. In addition, the nucleotide coding sequences of these proteins were identified and included in the T. foetus database, and the 3D structure of the proteins was predicted. In conclusion, this study indicated: (1) adenosine triphosphatase is present in the Golgi, (2) ATPase is conserved between T. foetus and T. vaginalis, (3) there is new information concerning the nucleic acid sequences and protein structures of adenosine triphosphatase and beta-tubulin from T. foetus and (4) the mAb anti-Golgi 20.3 is a good Golgi marker and can be used in future studies.


Assuntos
Adenosina Trifosfatases/metabolismo , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Complexo de Golgi/ultraestrutura , Infecções Protozoárias em Animais/parasitologia , Tritrichomonas foetus/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Bovinos , Feminino , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão/veterinária , Microscopia de Fluorescência/veterinária , Modelos Moleculares , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/imunologia , Tritrichomonas foetus/enzimologia , Tritrichomonas foetus/genética , Tritrichomonas foetus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA