Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(5): 1572-1581, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38717981

RESUMO

Inside cells, various biological systems work cooperatively for homeostasis and self-replication. These systems do not work independently as they compete for shared elements like ATP and NADH. However, it has been believed that such competition is not a problem in codependent biological systems such as the energy-supplying glycolysis and the energy-consuming translation system. In this study, we biochemically reconstituted the coupling system of glycolysis and translation using purified elements and found that the competition for ATP between glycolysis and protein synthesis interferes with their coupling. Both experiments and simulations revealed that this interference is derived from a metabolic tug-of-war between glycolysis and translation based on their reaction rates, which changes the threshold of the initial substrate concentration for the success coupling. By the metabolic tug-of-war, translation energized by strong glycolysis is facilitated by an exogenous ATPase, which normally inhibits translation. These findings provide chemical insights into the mechanism of competition among biological systems in living cells and provide a framework for the construction of synthetic metabolism in vitro.


Assuntos
Trifosfato de Adenosina , Glicólise , Biossíntese de Proteínas , Trifosfato de Adenosina/metabolismo , NAD/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética
2.
FEBS Open Bio ; 14(1): 79-95, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049196

RESUMO

Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.


Assuntos
Glucose , Fígado , Glucose/metabolismo , Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Hepatócitos/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
3.
Biochem Biophys Res Commun ; 694: 149416, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147697

RESUMO

The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.


Assuntos
Glucose , Hepatócitos , Hepatócitos/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ácido Láctico , Trifosfato de Adenosina/metabolismo , Piruvatos
4.
Analyst ; 148(23): 5843-5850, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37941425

RESUMO

We developed a coiled Q-probe (CQ-probe), a fluorescent probe containing a coiled-coil peptide pair E4/K4, to convert antibodies into biosensors for homogeneous immunoassays. This probe consists of an antibody-binding protein, protein M (PM) with the E4 peptide and the K4 peptide with a fluorescent dye. Compared to PM Q-probes, which are generated by modifying the C-terminus of PM with a fluorescent dye, CQ-probe variants with various linkers are easy to prepare and therefore enable the establishment of biosensors with a significant fluorescence response by localizing the fluorescent dye at the optimal position for quenching and antigen-dependent release. The fluorescence changes of biosensors converted from anti-BGP, anti-cortisol, and anti-testosterone antibodies using the rhodamine 6G (or TAMRA)-labeled CQ-probe upon antigen addition were 13 (or 2.6), 9.7 (or 1.5), and 2.1 (or 1.2) times larger than that of the biosensors converted using the PM Q-probe. Furthermore, the CQ-probe converted anti-digoxin IgG into a functional biosensor, whereas the PM Q-probe/antibody complex showed an insufficient response. This technology exhibits a promising capacity to convert antibodies into high-response biosensors, which are expected to be applied in a wide range of fields, including clinical diagnosis, environmental surveys, food analysis, and biological research.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Corantes Fluorescentes/metabolismo , Anticorpos , Peptídeos , Antígenos
5.
Biosensors (Basel) ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37622854

RESUMO

In vitro compartmentalization (IVC) is a technique for generating water-in-oil microdroplets to establish the genotype (DNA information)-phenotype (biomolecule function) linkage required by many biological applications. Recently, fluorinated oils have become more widely used for making microdroplets due to their better biocompatibility. However, it is difficult to perform multi-step reactions requiring the addition of reagents in water-in-fluorinated-oil microdroplets. On-chip droplet manipulation is usually used for such purposes, but it may encounter some technical issues such as low throughput or time delay of reagent delivery into different microdroplets. Hence, to overcome the above issues, we demonstrated a nanodroplet-based approach for the delivery of copper ions and middle-sized peptide molecules (human p53 peptide, 2 kDa). We confirmed the ion delivery by microscopic inspection of crystal formation inside the microdroplet, and confirmed the peptide delivery using a fluorescent immunosensor. We believe that this nanodroplet-based delivery method is a promising approach to achieving precise control for a broad range of fluorocarbon IVC-based biological applications, including molecular evolution, cell factory engineering, digital nucleic acid detection, or drug screening.


Assuntos
Técnicas Biossensoriais , Humanos , Indicadores e Reagentes , Imunoensaio , Cobre , Água
6.
RSC Adv ; 13(23): 15514-15520, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37223420

RESUMO

There is a wide range in the concentration of intracellular cyclic adenosine 3',5'-monophosphate (cAMP), which mediates specific effects as a second messenger in pathways affecting many physiological processes. Here, we developed green fluorescent cAMP indicators, named Green Falcan (Green fluorescent protein-based indicator visualizing cAMP dynamics) with various EC50 values (0.3, 1, 3, 10 µM) for covering the wide range of intracellular cAMP concentrations. The fluorescence intensity of Green Falcans increased in a cAMP dose-dependent manner, with a dynamic range of over 3-fold. Green Falcans showed a high specificity for cAMP over its structural analogues. When we expressed Green Falcans in HeLa cells, these indicators were applicable for visualization of cAMP dynamics in the low concentration range compared to the previously developed cAMP indicators, and visualized distinct kinetics of cAMP in various pathways with high spatiotemporal resolution in living cells. Furthermore, we demonstrated that Green Falcans are applicable to dual-color imaging with R-GECO, a red fluorescent Ca2+ indicator, in the cytoplasm and the nucleus. This study shows that Green Falcans open up a new avenue for understanding hierarchal and cooperative interactions with other molecules in various cAMP signaling pathways by multi-color imaging.

7.
Cells ; 12(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899830

RESUMO

Adenosine 5' triphosphate (ATP) is the energy currency of life, which is produced in mitochondria (~90%) and cytosol (less than 10%). Real-time effects of metabolic changes on cellular ATP dynamics remain indeterminate. Here we report the design and validation of a genetically encoded fluorescent ATP indicator that allows for real-time, simultaneous visualization of cytosolic and mitochondrial ATP in cultured cells. This dual-ATP indicator, called smacATPi (simultaneous mitochondrial and cytosolic ATP indicator), combines previously described individual cytosolic and mitochondrial ATP indicators. The use of smacATPi can help answer biological questions regarding ATP contents and dynamics in living cells. As expected, 2-deoxyglucose (2-DG, a glycolytic inhibitor) led to substantially decreased cytosolic ATP, and oligomycin (a complex V inhibitor) markedly decreased mitochondrial ATP in cultured HEK293T cells transfected with smacATPi. With the use of smacATPi, we can also observe that 2-DG treatment modestly attenuates mitochondrial ATP and oligomycin reduces cytosolic ATP, indicating the subsequent changes of compartmental ATP. To evaluate the role of ATP/ADP carrier (AAC) in ATP trafficking, we treated HEK293T cells with an AAC inhibitor, Atractyloside (ATR). ATR treatment attenuated cytosolic and mitochondrial ATP in normoxia, suggesting AAC inhibition reduces ADP import from the cytosol to mitochondria and ATP export from mitochondria to cytosol. In HEK293T cells subjected to hypoxia, ATR treatment increased mitochondrial ATP along with decreased cytosolic ATP, implicating that ACC inhibition during hypoxia sustains mitochondrial ATP but may not inhibit the reversed ATP import from the cytosol. Furthermore, both mitochondrial and cytosolic signals decrease when ATR is given in conjunction with 2-DG in hypoxia. Thus, real-time visualization of spatiotemporal ATP dynamics using smacATPi provides novel insights into how cytosolic and mitochondrial ATP signals respond to metabolic changes, providing a better understanding of cellular metabolism in health and disease.


Assuntos
Trifosfato de Adenosina , Estresse Fisiológico , Humanos , Citosol/metabolismo , Células HEK293 , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Atractilosídeo/metabolismo , Oligomicinas
8.
Chem Sci ; 13(33): 9739-9748, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091915

RESUMO

Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting.

9.
Sci Rep ; 11(1): 22590, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799644

RESUMO

Quenchbody (Q-body) is a quench-based fluorescent immunosensor labeled with fluorescent dye(s) near the antigen-binding site of an antibody. Q-bodies can detect a range of target molecules rapidly and directly. However, because Q-bodies show different antigen responses depending on the antibody used, time-consuming optimization of the Q-body structure is often necessary, and a high-throughput screening method for discriminating and selecting good Q-bodies is required. Here, we aimed to develop a molecular display method of nanobody-based "mini Q-bodies" by combining yeast surface display and coiled-coil forming E4/K4 peptide-based fluorescence labeling. As a result, the yeast-displayed mini Q-body recognizing the anti-cancer agent methotrexate (MTX) showed significant quenching and MTX-dependent dequenching on cells. To demonstrate the applicability of the developed method to select highly responsive mini Q-bodies, a small nanobody library consisting of 30 variants that recognize human serum albumin was used as a model. The best variant, showing a 2.4-fold signal increase, was obtained through selection by flow cytometry. Furthermore, the same nanobody prepared from Escherichia coli also worked as a mini Q-body after dye labeling. The described approach will be applied to quickly obtain well-behaved Q-bodies and other fluorescent biosensors for various targets through directed evolutionary approaches.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/farmacologia , Anticorpos de Domínio Único/química , Anticorpos/imunologia , Antígenos/imunologia , Escherichia coli/metabolismo , Citometria de Fluxo , Fluorescência , Humanos , Sistema Imunitário , Imunoensaio , Metotrexato/farmacologia , Peptídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/imunologia , Albumina Sérica Humana/química
10.
Chem Commun (Camb) ; 57(66): 8206-8209, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34308943

RESUMO

Here, we report a rapid and efficient method to fabricate Quenchbodies (Q-bodies) that can detect targets with antigen-dependent fluorescence augmentation using a stable coiled-coil peptide pair, E4 and K4 (coiled Q-body, CQ-body). The CQ-body allowed antigen detection not only in buffer but also in 50% plasma. Furthermore, we describe FRET-type CQ-bodies using a dual-coloured K4 peptide, which allowed a more precise antigen quantification. Lastly, successful fabrication of nanobody-based CQ-body shows its applicability to a range of antibody fragments.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Fluorescência , Peptídeos/química , Conformação Proteica em alfa-Hélice
11.
ACS Omega ; 6(15): 10039-10046, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056159

RESUMO

Histone deacetylase (HDAC) inhibitors that regulate the posttranslational modifications of histone tails are therapeutic drugs for many diseases such as cancers, neurodegenerative diseases, and asthma; however, convenient and sensitive methods to measure the effect of HDAC inhibitors in cultured mammalian cells remain limited. In this study, a fluorogenic assay was developed to detect the acetylation of lysine 9 on histone H3 (H3K9ac), which is involved in several cancers, Alzheimer's disease, and autism spectrum disorder. To monitor the changes in H3K9ac levels, an H3K9ac-specific intrabody fused with a small fragment FP11 of the split-yellow fluorescent protein (YFP) (scFv-FP11) was expressed in mammalian cells, together with a larger YFP fragment FP1-10 fused with a nuclear localization signal. When the intranuclear level of H3K9ac is increased, the scFv-FP11 is more enriched in the nucleus via passive diffusion through the nuclear pores from the cytoplasm, which increases the chance of forming a fluorescent complex with the nuclear YFP1-10. The results showed that the YFP fluorescence increased when the cells were treated with HDAC inhibitors. Moreover, the sensitivity of the split YFP reporter system to three HDAC inhibitors was higher than that of a conventional cell viability test. The assay system will be a simple and sensitive detection method to evaluate HDAC inhibitor activities at the levels of both single cells and cell populations.

12.
Biosens Bioelectron ; 165: 112425, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729542

RESUMO

Quenchbody (Q-body) is a fluorescent biosensor in which a fluorescent dye is tagged near the antigen binding site of an antibody. The fluorescence of the dye is quenched by the tryptophan residues present in the variable region of the antibody, and is recovered when the antigen binds. Q-bodies have been prepared using recombinant DNA technology by introducing one or more tag sequence(s) at either the N-terminal of the Fab or the single chain variable region fragment of the antibody, and labeling the tag with a fluorescent dye. However, preparation of recombinant antibody fragments is time-consuming and the performance of the Q-body is unpredictable. Here we report an antibody-binding quenching probe made from protein M from Mycoplasma genitalium that can transform the IgG antibody into an immunosensor. By using bacterially expressed and purified protein M and labeling the C-terminal cysteine-containing tag, we prepared a TAMRA-labeled PM Q-probe. When the Q-probe was incubated with Fab or IgG recognizing the bone Gla protein, the fluorescence of the probe was quenched and subsequently recovered by the adding of antigens in a dose-dependent manner. We also succeeded in detecting several small biomarkers with nanomolar sensitivity, including thyroxine extracted from human serum. The clone found to be suitable for the detection of cortisol was confirmed to work as a recombinant Q-body as well, which also worked in 50% human serum. The results suggest that the Q-probe can quickly convert an IgG to a biosensor, which will be useful in rapid diagnosis of small biomarkers.


Assuntos
Técnicas Biossensoriais , Antígenos , Proteínas de Transporte , Corantes Fluorescentes , Humanos , Imunoensaio
13.
Mol Ther Oncolytics ; 17: 293-305, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32368617

RESUMO

Antibody applications in cancer immunotherapy involve diverse strategies, some of which redirect T cell-mediated immunity via engineered antibodies. Affinity is a trait that is crucial for these strategies, as optimal affinity reduces unwanted side effects while retaining therapeutic function. Antibody-antigen pairs possessing a broad affinity range are required to define optimal affinity and to investigate the affinity-associated functional profiles of T cell-engaging strategies such as bispecific antibodies and chimeric antigen receptor-engineered T cells. Here, we demonstrate the unique binding characteristic of the developed antibody clone MVR, which exhibits robust binding to B-lymphoid cell lines. Intriguingly, MVR specifically recognizes the highly polymorphic human leukocyte antigen (HLA)-DR complex and exhibits varying affinities that are dependent upon the HLA-DRB1 allele type. Remarkably, MVR binds to the conformational epitope that consists of two hypervariable regions. As an application of MVR, we demonstrate an MVR-engineered chimeric antigen receptor (CAR) that elicits affinity-dependent function in response to a panel of target cell lines that express different HLA-DRB1 alleles. This tool evaluates the effect of affinity on cytotoxic killing, polyfunctionality, and activation-induced cell death of CAR-engineered T cells. Collectively, MVR exhibits huge potential for the evaluation of the affinity-associated profile of T cells that are redirected by engineered antibodies.

14.
J Mol Endocrinol ; 64(3): 133-143, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940281

RESUMO

Glucagon-like peptide-1 (GLP-1), secreted by gastrointestinal enteroendocrine L cells, induces insulin secretion and is important for glucose homeostasis. GLP-1 secretion is induced by various luminal nutrients, including amino acids. Intracellular Ca2+ and cAMP dynamics play an important role in GLP-1 secretion regulation; however, several aspects of the underlying mechanism of amino acid-induced GLP-1 secretion are not well characterized. We investigated the mechanisms underlying the L-glutamine-induced increase in Ca2+ and cAMP intracellular concentrations ([Ca2+]i and [cAMP]i, respectively) in murine enteroendocrine L cell line GLUTag cells. Application of L-glutamine to cells under low extracellular [Na+] conditions, which inhibited the function of the sodium-coupled L-glutamine transporter, did not induce an increase in [Ca2+]i. Application of G protein-coupled receptor family C group 6 member A and calcium-sensing receptor antagonist showed little effect on [Ca2+]i and [cAMP]i; however, taste receptor type 1 member 3 (TAS1R3) antagonist suppressed the increase in [cAMP]i. To elucidate the function of TAS1R3, which forms a heterodimeric umami receptor with taste receptor type 1 member 1 (TAS1R1), we generated TAS1R1 and TAS1R3 mutant GLUTag cells using the CRISPR/Cas9 system. TAS1R1 mutant GLUTag cells exhibited L-glutamine-induced increase in [cAMP]i, whereas some TAS1R3 mutant GLUTag cells did not exhibit L-glutamine-induced increase in [cAMP]i and GLP-1 secretion. These findings suggest that TAS1R3 is important for L-glutamine-induced increase in [cAMP]i and GLP-1 secretion. Thus, TAS1R3 may be coupled with Gs and related to cAMP regulation.


Assuntos
Células Enteroendócrinas/efeitos dos fármacos , Glutamina/farmacologia , Receptores de Aminoácido/fisiologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células L , Camundongos , Receptores de Aminoácido/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Via Secretória/efeitos dos fármacos , Via Secretória/genética , Transdução de Sinais/efeitos dos fármacos
15.
Nat Commun ; 11(1): 471, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980655

RESUMO

Astrocytes may function as mediators of the impact of noradrenaline on neuronal function. Activation of glial α1-adrenergic receptors triggers rapid astrocytic Ca2+ elevation and facilitates synaptic plasticity, while activation of ß-adrenergic receptors elevates cAMP levels and modulates memory consolidation. However, the dynamics of these processes in behaving mice remain unexplored, as do the interactions between the distinct second messenger pathways. Here we simultaneously monitored astrocytic Ca2+ and cAMP and demonstrate that astrocytic second messengers are regulated in a temporally distinct manner. In behaving mice, we found that while an abrupt facial air puff triggered transient increases in noradrenaline release and large cytosolic astrocytic Ca2+ elevations, cAMP changes were not detectable. By contrast, repeated aversive stimuli that lead to prolonged periods of vigilance were accompanied by robust noradrenergic axonal activity and gradual sustained cAMP increases. Our findings suggest distinct astrocytic signaling pathways can integrate noradrenergic activity during vigilance states to mediate distinct functions supporting memory.


Assuntos
Nível de Alerta/fisiologia , Astrócitos/fisiologia , Norepinefrina/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Condicionamento Clássico/fisiologia , AMP Cíclico/metabolismo , Medo/fisiologia , Corantes Fluorescentes , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Memória/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Receptores Adrenérgicos/fisiologia
16.
J Biol Chem ; 294(44): 16034-16048, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506300

RESUMO

Sonic hedgehog (SHH) is important for organogenesis during development. Recent studies have indicated that SHH is also involved in the proliferation and transformation of astrocytes to the reactive phenotype. However, the mechanisms underlying these are unknown. Involvement of SHH signaling in calcium (Ca) signaling has not been extensively studied. Here, we report that SHH and Smoothened agonist (SAG), an activator of the signaling receptor Smoothened (SMO) in the SHH pathway, activate Ca oscillations in cultured murine hippocampal astrocytes. The response was rapid, on a minute time scale, indicating a noncanonical pathway activity. Pertussis toxin blocked the SAG effect, indicating an involvement of a Gi coupled to SMO. Depletion of extracellular ATP by apyrase, an ATP-degrading enzyme, inhibited the SAG-mediated activation of Ca oscillations. These results indicate that SAG increases extracellular ATP levels by activating ATP release from astrocytes, resulting in Ca oscillation activation. We hypothesize that SHH activates SMO-coupled Gi in astrocytes, causing ATP release and activation of Gq/11-coupled P2 receptors on the same cell or surrounding astrocytes. Transcription factor activities are often modulated by Ca patterns; therefore, SHH signaling may trigger changes in astrocytes by activating Ca oscillations. This enhancement of Ca oscillations by SHH signaling may occur in astrocytes in the brain in vivo because we also observed it in hippocampal brain slices. In summary, SHH and SAG enhance Ca oscillations in hippocampal astrocytes, Gi mediates SAG-induced Ca oscillations downstream of SMO, and ATP-permeable channels may promote the ATP release that activates Ca oscillations in astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Proteínas Hedgehog/metabolismo , Hipocampo/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos ICR , Receptor Smoothened/metabolismo
17.
Anal Chem ; 91(7): 4821-4830, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30869867

RESUMO

Glucose is the most important energy source for living animals. Here, we developed a series of single fluorescent protein (FP)-based glucose indicators, named as "Green Glifons", to understand the hierarchal and mutual relationships between molecules involved in energy metabolism. Three indicators showed a different EC50 for glucose (50, 600, and 4000 µM), producing a ∼7-fold change in fluorescence intensity in response to glucose. The indicators could visualize glucose dynamics in the cytoplasm, plasma membrane, nucleus and mitochondria of living HeLa cells and in vivo, in the pharyngeal muscle of C. elegans and could measure murine blood glucose levels. Finally, the indicators were applicable to dual-color imaging, revealing the dynamic interplay between glucose and Ca2+ in mouse pancreatic MIN6 m9 ß cells. We propose that these indicators will facilitate and contribute to in vivo and multicolor imaging of energy metabolism.


Assuntos
Corantes Fluorescentes/química , Glucose/metabolismo , Proteínas de Fluorescência Verde/química , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Glucose/análise , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Imagem Óptica , Células Tumorais Cultivadas
18.
Angew Chem Int Ed Engl ; 57(34): 10873-10878, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29952110

RESUMO

Adenosine triphosphate (ATP) provides energy for the regulation of multiple cellular processes in living organisms. Capturing the spatiotemporal dynamics of ATP in single cells is fundamental to our understanding of the mechanisms underlying cellular energy metabolism. However, it has remained challenging to visualize the dynamics of ATP in and between distinct intracellular organelles and its interplay with other signaling molecules. Using single fluorescent proteins, multicolor ATP indicators were developed, enabling the simultaneous visualization of subcellular ATP dynamics in the cytoplasm and mitochondria of cells derived from mammals, plants, and worms. Furthermore, in combination with additional fluorescent indicators, the dynamic interplay of ATP, cAMP, and Ca2+ could be visualized in activated brown adipocyte. This set of indicator tools will facilitate future research into energy metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Cor , Análise de Célula Única , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Fluorescência , Glicólise , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
19.
Sci Rep ; 7(1): 7351, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779099

RESUMO

cAMP is a common second messenger that is involved in various physiological processes. To expand the colour palette of available cAMP indicators, we developed a red cAMP indicator named "Pink Flamindo" (Pink Fluorescent cAMP indicator). The fluorescence intensity of Pink Flamindo increases 4.2-fold in the presence of a saturating dose of cAMP, with excitation and emission peaks at 567 nm and 590 nm, respectively. Live-cell imaging revealed that Pink Flamindo is effective for monitoring the spatio-temporal dynamics of intracellular cAMP generated by photoactivated adenylyl cyclase in response to blue light, and in dual-colour imaging studies using a green Ca2+ indicator (G-GECO). Furthermore, we successfully monitored the elevation of cAMP levels in vivo in cerebral cortical astrocytes by two-photon imaging. We propose that Pink Flamindo will facilitate future in vivo, optogenetic studies of cell signalling and cAMP dynamics.


Assuntos
Técnicas Biossensoriais , AMP Cíclico/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular , Optogenética/métodos , Sequência de Aminoácidos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , AMP Cíclico/química , Proteínas Luminescentes/química , Modelos Moleculares , Conformação Molecular , Espectrofotometria , Relação Estrutura-Atividade , Proteína Vermelha Fluorescente
20.
Sci Rep ; 6: 28535, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27335157

RESUMO

During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution.


Assuntos
Morfogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Ectoderma/metabolismo , Fibroínas/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Gastrulação/fisiologia , Células HEK293 , Humanos , Miosinas/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA