Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 20(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736176

RESUMO

The bengamides comprise an interesting family of natural products isolated from sponges belonging to the prolific Jaspidae family. Their outstanding antitumor properties, coupled with their unique mechanism of action and unprecedented molecular structures, have prompted an intense research activity directed towards their total syntheses, analogue design, and biological evaluations for their development as new anticancer agents. Together with these biological studies in cancer research, in recent years, the bengamides have been identified as potential antibiotics by their impressive biological activities against various drug-resistant bacteria such as Mycobacterium tuberculosis and Staphylococcus aureus. This review reports on the new advances in the chemistry and biology of the bengamides during the last years, paying special attention to their development as promising new antibiotics. Thus, the evolution of the bengamides from their initial exploration as antitumor agents up to their current status as antibiotics is described in detail, highlighting the manifold value of these marine natural products as valid hits in medicinal chemistry.


Assuntos
Antineoplásicos , Produtos Biológicos , Mycobacterium tuberculosis , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Estrutura Molecular
2.
ACS Cent Sci ; 7(5): 815-830, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079898

RESUMO

Transcriptional coregulators, which mediate chromatin-dependent transcriptional signaling, represent tractable targets to modulate tumorigenic gene expression programs with small molecules. Genetic loss-of-function studies have recently implicated the transcriptional coactivator, ENL, as a selective requirement for the survival of acute leukemia and highlighted an essential role for its chromatin reader YEATS domain. Motivated by these discoveries, we executed a screen of nearly 300,000 small molecules and identified an amido-imidazopyridine inhibitor of the ENL YEATS domain (IC50 = 7 µM). Improvements to the initial screening hit were enabled by adopting and expanding upon a SuFEx-based approach to high-throughput medicinal chemistry, ultimately demonstrating that it is compatible with cell-based drug discovery. Through these efforts, we discovered SR-0813, a potent and selective ENL/AF9 YEATS domain inhibitor (IC50 = 25 nM). Armed with this tool and a first-in-class ENL PROTAC, SR-1114, we detailed the biological response of AML cells to pharmacological ENL disruption for the first time. Most notably, we discovered that ENL YEATS inhibition is sufficient to selectively suppress ENL target genes, including HOXA9/10, MYB, MYC, and a number of other leukemia proto-oncogenes. Cumulatively, our study establishes YEATS domain inhibition as a viable approach to disrupt the pathogenic function of ENL in acute leukemia and provides the first thoroughly characterized chemical probe for the ENL YEATS domain.

3.
ACS Chem Biol ; 15(8): 2060-2069, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32662975

RESUMO

Members of the CA class of cysteine proteases have multifaceted roles in physiology and virulence for many bacteria. Streptococcal pyrogenic exotoxin B (SpeB) is secreted by Streptococcus pyogenes and implicated in the pathogenesis of the bacterium through degradation of key human immune effector proteins. Here, we developed and characterized a clickable inhibitor, 2S-alkyne, based on X-ray crystallographic analysis and structure-activity relationships. Our SpeB probe showed irreversible enzyme inhibition in biochemical assays and labeled endogenous SpeB in cultured S. pyogenes supernatants. Importantly, application of 2S-alkyne decreased S. pyogenes survival in the presence of human neutrophils and supports the role of SpeB-mediated proteolysis as a mechanism to limit complement-mediated host defense. We posit that our SpeB inhibitor will be a useful chemical tool to regulate, label, and quantitate secreted cysteine proteases with SpeB-like activity in complex biological samples and a lead candidate for new therapeutics designed to sensitize S. pyogenes to host immune clearance.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Cisteína Proteases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Streptococcus pyogenes/enzimologia , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Conformação Proteica , Streptococcus pyogenes/patogenicidade , Relação Estrutura-Atividade , Virulência
4.
J Am Chem Soc ; 142(25): 10899-10904, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479075

RESUMO

Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 µM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN═S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Exotoxinas/antagonistas & inibidores , Compostos de Enxofre/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Química Click , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/toxicidade , Descoberta de Drogas , Exotoxinas/química , Exotoxinas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Microssomos Hepáticos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica
5.
Nat Microbiol ; 5(1): 56-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686027

RESUMO

Plant-derived lignans, consumed daily by most individuals, are thought to protect against cancer and other diseases1; however, their bioactivity requires gut bacterial conversion to enterolignans2. Here, we dissect a four-species bacterial consortium sufficient for all five reactions in this pathway. A single enzyme (benzyl ether reductase, encoded by the gene ber) was sufficient for the first two biotransformations, variable between strains of Eggerthella lenta, critical for enterolignan production in gnotobiotic mice and unique to Coriobacteriia. Transcriptional profiling (RNA sequencing) independently identified ber and genomic loci upregulated by each of the remaining substrates. Despite their low abundance in gut microbiomes and restricted phylogenetic range, all of the identified genes were detectable in the distal gut microbiomes of most individuals living in northern California. Together, these results emphasize the importance of considering strain-level variations and bacterial co-occurrence to gain a mechanistic understanding of the bioactivation of plant secondary metabolites by the human gut microbiome.


Assuntos
Actinobacteria/genética , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Lignanas/metabolismo , Actinobacteria/classificação , Actinobacteria/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Genoma Bacteriano/genética , Humanos , Lignanas/química , Redes e Vias Metabólicas/genética , Camundongos , Consórcios Microbianos/genética , Filogenia , Especificidade da Espécie
6.
Anal Chim Acta ; 1057: 106-113, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30832908

RESUMO

Lead identification and optimization are essential steps in the development of a new drug. It requires cost-effective, selective and sensitive chemical tools. Here, we report a novel method using nanobodies that allows the efficient screening for potent ligands. The method is illustrated with the cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), a virulence factor secreted by the opportunistic pathogen Pseudomonas aeruginosa. 18 nanobodies selective to Cif were isolated by bio-panning from nanobody-phage library constructed from immunized llama. 8 out of 18 nanobodies were identified as potent inhibitors of Cif enzymatic activity with IC50s in the range of 0.3-6.4 µM. A nanobody VHH219 showed high affinity (KD = 0.08 nM) to Cif and the highest inhibitory potency, IC50 = 0.3 µM. A displacement sandwich ELISA (dsELISA) with VHH219 was then developed for classification of synthetic small molecule inhibitors according their inhibitory potency. The developed assay allowed identification of new inhibitor with highest potency reported so far (0.16 ±â€¯0.02 µM). The results from dsELISA assay correlates strongly with a conventional fluorogenic assay (R = 0.9998) in predicting the inhibitory potency of the tested compounds. However, the novel dsELISA is an order of magnitude more sensitive and allows the identification and ranking of potent inhibitors missed by the classic fluorogenic assay method. These data were supported with Octet biolayer interferometry measurements. The novel method described herein relies solely on the binding properties of the specific neutralizing nanobody, and thus is applicable to any pharmacological target for which such a nanobody can be found, independent of any requirement for catalytic activity.


Assuntos
Proteínas de Bactérias/imunologia , Anticorpos de Domínio Único/imunologia , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Animais , Camelídeos Americanos , Domínio Catalítico , Imunização , Concentração Inibidora 50 , Anticorpos de Domínio Único/química
7.
Cell Chem Biol ; 25(3): 301-308.e12, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29337186

RESUMO

As resistance to antibiotics increases, the exploration of new targets and strategies to combat pathogenic bacteria becomes more urgent. Ideal protein targets are required for viability across many species, are unique to prokaryotes to limit effects on the host, and have robust assays to quantitate activity and identify inhibitors. Lipoprotein signal peptidase (Lsp) is a transmembrane aspartyl protease required for lipoprotein maturation and comprehensively fits these criteria. Here, we have developed the first in vitro high-throughput assay to monitor proteolysis by Lsp. We employed our high-throughput screen assay against 646,275 compounds to discover inhibitors of Lsp and synthesized a range of analogs to generate molecules with nanomolar half maximal inhibitory concentration values. Importantly, our inhibitors are effective in preventing the growth of E. coli cultures in the presence of outer-membrane permeabilizer PMBN and should facilitate development of antibacterial agents with a novel mechanism of action to treat antibiotic-resistant bacteria.


Assuntos
Antibacterianos/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Transferência Ressonante de Energia de Fluorescência , Concentração Inibidora 50 , Naftalenossulfonatos/química , Peptídeos/química , Peptídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , p-Dimetilaminoazobenzeno/análogos & derivados , p-Dimetilaminoazobenzeno/química
8.
Structure ; 25(5): 697-707.e4, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28392259

RESUMO

Pseudomonas aeruginosa secretes an epoxide hydrolase with catalytic activity that triggers degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and perturbs other host defense networks. Targets of this CFTR inhibitory factor (Cif) are largely unknown, but include an epoxy-fatty acid. In this class of signaling molecules, chirality can be an important determinant of physiological output and potency. Here we explore the active-site chemistry of this two-step α/ß-hydrolase and its implications for an emerging class of virulence enzymes. In combination with hydrolysis data, crystal structures of 15 trapped hydroxyalkyl-enzyme intermediates reveal the stereochemical basis of Cif's substrate specificity, as well as its regioisomeric and enantiomeric preferences. The structures also reveal distinct sets of conformational changes that enable the active site to expand dramatically in two directions, accommodating a surprising array of potential physiological epoxide targets. These new substrates may contribute to Cif's diverse effects in vivo, and thus to the success of P. aeruginosa and other pathogens during infection.


Assuntos
Epóxido Hidrolases/química , Fatores de Virulência/química , Sítios de Ligação , Cristalografia por Raios X , Epóxido Hidrolases/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato , Fatores de Virulência/metabolismo
9.
J Med Chem ; 59(10): 4790-9, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27120257

RESUMO

The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.


Assuntos
Desenho de Fármacos , Epóxido Hidrolases/antagonistas & inibidores , Pseudomonas aeruginosa/enzimologia , Tri-Iodotironina/análogos & derivados , Fatores de Virulência/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Epóxido Hidrolases/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Tri-Iodotironina/síntese química , Tri-Iodotironina/química , Tri-Iodotironina/farmacologia , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA