Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849720

RESUMO

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Assuntos
Restrição Calórica , Metabolismo Energético , Fígado , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Condicionamento Físico Animal , Animais , Músculo Esquelético/metabolismo , Masculino , Camundongos , Restrição Calórica/métodos , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Metabolismo Energético/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Camundongos Endogâmicos ICR , Treino Aeróbico/métodos , Transportador de Glucose Tipo 4/metabolismo , Adaptação Fisiológica/fisiologia , Citrato (si)-Sintase/metabolismo , Proteínas Musculares
2.
FASEB J ; 36(12): e22628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322028

RESUMO

Exercise training enhances oxidative capacity whereas detraining reduces mitochondrial content in skeletal muscle. The strategy to suppress the detraining-induced reduction of mitochondrial content has not been fully elucidated. As previous studies reported that branched-chain amino acid (BCAA) ingestion increased mitochondrial content in skeletal muscle, we evaluated whether BCAA supplementation could suppress the detraining-induced reduction of mitochondrial content. Six-week-old male Institute of Cancer Research (ICR) mice were randomly divided into four groups as follows: control (Con), endurance training (Tr), detraining (DeTr), and detraining with BCAA supplementation (DeTr + BCAA). Mice in Tr, DeTr, and DeTr + BCAA performed treadmill running exercises [20-30 m/min, 60 min, 5 times/week, 4 weeks]. Then, mice in DeTr and DeTr + BCAA were administered with water or BCAA [0.6 mg/g of body weight, twice daily] for 2 weeks of detraining. In whole skeletal muscle, mitochondrial enzyme activities and protein content were decreased after 2 weeks of detraining, but the reduction was suppressed by BCAA supplementation. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, a master regulator of mitochondrial biogenesis, was decreased by detraining irrespective of BCAA ingestion. Regarding mitochondrial degradation, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a mitophagy-related protein, was significantly higher in the Tr group than in the DeTr + BCAA group, but not different from in the DeTr group. With respect to mitochondrial quality, BCAA ingestion did not affect oxygen consumption rate (OCR) and reactive oxygen species (ROS) production in isolated mitochondria. Our findings suggest that BCAA ingestion suppresses the detraining-induced reduction of mitochondrial content partly through inhibiting mitophagy.


Assuntos
Aminoácidos de Cadeia Ramificada , Mitocôndrias , Masculino , Camundongos , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Suplementos Nutricionais
3.
Physiol Rep ; 10(17): e15457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065874

RESUMO

The concept of lactate shuttle is widely accepted in exercise physiology. Lactate transport is mediated by monocarboxylate transporters (MCT), which enable cells to take up and release lactate. However, the role of lactate during exercise has not yet been fully elucidated. In this study, we investigated the effects of lactate transport inhibition on exercise capacity and metabolism in mice. Here, we demonstrated that MCT1 inhibition by α-cyano-4-hydroxycinnamate administration (4-CIN, 200 mg/g of body weight) reduced the treadmill running duration at 20 m/min. The administration of 4-CIN increased the blood lactate concentration immediately after exercise. With matched exercise duration, the muscle lactate concentration was higher while muscle glycogen content was lower in 4-CIN-administered mice. Further, we showed that MCT4 inhibition by bindarit administration (50 mg/kg of body weight) reduced the treadmill running duration at 40 m/min. Bindarit administration increased the muscle lactate but did not alter the blood lactate and glucose concentrations, as well as muscle glycogen content, immediately after exercise. A negative correlation was observed between exercise duration at 40 m/min and muscle lactate concentration immediately after exercise. Our results suggest that lactate transport via MCT1 and MCT4 plays a pivotal role in sustaining exercise.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Animais , Peso Corporal , Tolerância ao Exercício , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Simportadores/metabolismo
4.
J Physiol Sci ; 72(1): 14, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768774

RESUMO

This study investigated whether endurance training attenuates orchiectomy (ORX)-induced metabolic alterations. At 7 days of recovery after sham operation or ORX surgery, the mice were randomized to remain sedentary or undergo 5 weeks of treadmill running training (15-20 m/min, 60 min, 5 days/week). ORX decreased glycogen concentration in the gastrocnemius muscle, enhanced phosphofructokinase activity in the plantaris muscle, and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. Mitochondrial enzyme activities and protein content in the plantaris and soleus muscles were also decreased after ORX, but preserved, in part, by endurance training. In the treadmill running test (15 m/min, 60 min) after 4 weeks of training, orchiectomized sedentary mice showed impaired exercise performance, which was restored by endurance training. Thus, endurance training could be a potential therapeutic strategy to prevent the hypoandrogenism-induced decline in muscle mitochondrial content and physical performance.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Corrida , Animais , Glicogênio/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia
5.
Physiol Rep ; 9(23): e15145, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34889527

RESUMO

We investigated whether moderate-intensity training of horses in moderate hypoxia for 4 weeks elicits greater adaptations in exercise performance, aerobic capacity, and glycolytic/oxidative metabolism in skeletal muscle compared to normoxic training. In a randomized crossover study design, seven untrained Thoroughbred horses (5.9 ± 1.1 years, 508 ± 9 kg) completed 4 weeks (3 sessions/week) of two training protocols consisting of 3-min cantering at 70% of maximal oxygen consumption ( V˙O2max ) in hypoxia (HYP; FI O2  = 14.7%) and normoxia (NOR; FI O2  = 21.0%) with a 4-month washout period. Normoxic incremental exercise tests (IET) were conducted before and after training. Biopsy samples were obtained from the middle gluteal muscle before IET and monocarboxylate transporter (MCT) protein expression and glycolytic/mitochondrial enzyme activities were analyzed. Data were analyzed using mixed models (p < 0.05). Running speed was 7.9 ± 0.2 m/s in both groups and arterial oxygen saturation during training in NOR and HYP were 92.9 ± 0.9% and 75.7 ± 3.9%, respectively. Run time in HYP (+9.7%) and V˙O2max in both groups (NOR, +6.4%; HYP, +4.3%) at IET increased after 4 weeks of training. However, cardiac output, arterial-mixed venous O2 difference, and hemoglobin concentration at exhaustion were unchanged in both conditions. While MCT1 protein and citrate synthase activity did not increase in both conditions after training, MCT4 protein (+13%), and phosphofructokinase activity (+42%) increased only in HYP. In conclusion, 4 weeks of moderate-intensity hypoxic training improves exercise performance and glycolytic capacity of skeletal muscle in horses.


Assuntos
Tolerância ao Exercício/fisiologia , Glicólise/fisiologia , Cavalos/fisiologia , Hipóxia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Masculino , Consumo de Oxigênio/fisiologia
6.
FEBS Open Bio ; 11(10): 2836-2844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510821

RESUMO

Lactate is considered to be a signaling molecule that induces mitochondrial adaptation and muscle hypertrophy. The purpose of this study was to examine whether lactate administration attenuates denervation-induced loss of mitochondrial content and muscle mass. Eight-week-old male Institute of Cancer Research mice underwent unilateral sciatic nerve transection surgery. The contralateral hindlimb served as a sham-operated control. From the day of surgery, mice were injected intraperitoneally with PBS or sodium lactate (equivalent to 1 g·kg-1 body weight) once daily for 9 days. After 10 days of denervation, gastrocnemius muscle weight decreased to a similar extent in both the PBS- and lactate-injected groups. Denervation significantly decreased mitochondrial enzyme activity, protein content, and MCT4 protein content in the gastrocnemius muscle. However, lactate administration did not have any significant effects. The current observations suggest that daily lactate administration for 9 days does not affect denervation-induced loss of mitochondrial content and muscle mass.


Assuntos
Ácido Láctico , Denervação Muscular , Animais , Ácido Láctico/metabolismo , Masculino , Camundongos , Mitocôndrias , Músculo Esquelético/metabolismo , Nervo Isquiático/metabolismo
7.
Physiol Rep ; 9(16): e15016, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427401

RESUMO

This study aimed to examine the effects of voluntary wheel running on cancer cachexia-induced mitochondrial alterations in mouse skeletal muscle. Mice bearing colon 26 adenocarcinoma (C26) were used as a model of cancer cachexia. C26 mice showed a lower gastrocnemius and plantaris muscle weight, but 4 weeks of voluntary exercise rescued these changes. Further, voluntary exercise attenuated observed declines in the levels of oxidative phosphorylation proteins and activities of citrate synthase and cytochrome c oxidase in the skeletal muscle of C26 mice. Among mitochondrial morphology regulatory proteins, mitofusin 2 (Mfn2) and dynamin-related protein 1 (Drp1) were decreased in the skeletal muscle of C26 mice, but exercise resulted in similar improvements as seen in markers of mitochondrial content. In isolated mitochondria, 4-hydroxynonenal and protein carbonyls were elevated in C26 mice, but exercise blunted the increases in these markers of oxidative stress. In addition, electron microscopy revealed that exercise alleviated the observed increase in the percentage of damaged mitochondria in C26 mice. These results suggest that voluntary exercise effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cachexia.


Assuntos
Caquexia/prevenção & controle , Mitocôndrias Musculares/ultraestrutura , Neoplasias/complicações , Condicionamento Físico Animal/métodos , Animais , Caquexia/etiologia , Citrato (si)-Sintase/metabolismo , Dinaminas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Masculino , Camundongos , Mitocôndrias Musculares/metabolismo , Atividade Motora , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Estresse Oxidativo , Carbonilação Proteica
8.
Neurosci Lett ; 633: 1-6, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27619538

RESUMO

Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of lactate transport via MCT2 in the cerebellum affects motor performance. To address this question, we examined motor performance in mice following the inhibition of lactate transport via MCT2 in the cerebellum using α-cyano-4-hydroxycinnamate (4-CIN). 4-CIN or saline was injected into the subarachnoidal space of the cerebellum of mice and motor performance was analyzed by a rotarod test both before and after injection. 4-CIN injection reduced retention time in the rotarod test by approximately 80% at 1h post-injection compared with pre-injection. No effect was observed at 2h post-injection or in mice treated with the vehicle control. Because we observed that MCT2 plays an important role in motor performance, we next investigated the effects of acute exercise on MCT2 transcription and protein levels in mice sampled pre-exercise and at 0 and 5h after 2h of treadmill running. We found a significant increase in MCT2 mRNA levels, but not of protein levels, in the cerebellum at 5h after exercise. Our results indicate that lactate transport via MCT2 in the cerebellum may play an important role in motor performance and that exercise can increase MCT2 expression at the transcriptional level.


Assuntos
Cerebelo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Atividade Motora , Condicionamento Físico Animal , Animais , Transporte Biológico , Córtex Cerebral/metabolismo , Ácidos Cumáricos/farmacologia , Ácido Láctico/metabolismo , Masculino , Camundongos Endogâmicos ICR , Transportadores de Ácidos Monocarboxílicos/genética , RNA Mensageiro/metabolismo , Simportadores/metabolismo
9.
Skelet Muscle ; 6: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834962

RESUMO

BACKGROUND: Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. RESULTS: Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. CONCLUSIONS: Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology.


Assuntos
Reparo do DNA , DNA Mitocondrial/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Mutação , Miocárdio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Células Cultivadas , DNA Polimerase gama , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , Genótipo , Expectativa de Vida , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mitocôndrias Cardíacas/patologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Contração Miocárdica , Miocárdio/patologia , Biogênese de Organelas , Estresse Oxidativo , Fenótipo , Transporte Proteico , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
10.
Mol Genet Metab ; 110(3): 297-302, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23906480

RESUMO

McArdle disease (MD) is a metabolic myopathy due to myophosphorylase deficiency, which leads to a severe limitation in the rate of adenosine triphosphate (ATP) resynthesis. Compensatory flux through the myoadenylate deaminase > > xanthine oxidase pathway should result in higher oxidative stress in skeletal muscle; however, oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2) mediated antioxidant response cascade in MD patients have not yet been examined. We show that MD patients have elevated muscle protein carbonyls and 4-hydroxynonenal (4-HNE) in comparison with healthy, age and activity matched controls (P < 0.05). Nuclear abundance of Nrf2 and Nrf2-antioxidant response element (ARE) binding was also higher in MD patients compared with controls (P < 0.05). The expressions of Nrf2 target genes were also higher in MD patients vs. controls. These observations suggest that MD patients experience elevated levels of oxidative stress, and that the Nrf2-mediated antioxidant response cascade is up-regulated in skeletal muscle to compensate.


Assuntos
Doença de Depósito de Glicogênio Tipo V/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Aldeídos/metabolismo , Feminino , Regulação da Expressão Gênica , Glucosiltransferases/metabolismo , Doença de Depósito de Glicogênio Tipo V/genética , Heme Oxigenase-1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/genética , Transcrição Gênica , Ácido Úrico/sangue
11.
Am J Vet Res ; 74(4): 642-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23531075

RESUMO

OBJECTIVE: To evaluate the effects of a single incremental exercise test (IET) on mRNA expression and protein content of monocarboxylate transporter (MCT) 1 and MCT4 in the gluteus medius muscle of Thoroughbreds. ANIMALS: 12 Thoroughbreds (6 males and 6 females; age, 3 to 4 years). PROCEDURES: Horses underwent an IET before and after 18 weeks of high-intensity exercise training (HIT). Horses were exercised at 90% of maximal oxygen consumption for 3 minutes during the initial 10 weeks of HIT and 110% of maximal oxygen consumption for 3 minutes during the last 8 weeks of HIT. Gluteus medius muscle biopsy specimens were obtained from horses before (baseline), immediately after, and at 3, 6, and 24 hours after the IET. RESULTS: Expression of MCT1 and MCT4 mRNA was upregulated at 3 and 6 hours after the IET in muscle specimens obtained from horses prior to HIT (untrained horses) and at 6 hours after the IET in muscle specimens obtained from horses after HIT (trained horses). For both untrained and trained horses, MCT1 and MCT4 protein contents were increased at 6 hours after the IET and did not differ at 24 hours after the IET, compared with those at baseline. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that a single IET resulted in transient increases in MCT1 and MCT4 mRNA expression and protein content in untrained and trained horses. These results may be important for the elucidation of exercise-induced alterations in lactate metabolism.


Assuntos
Regulação da Expressão Gênica/fisiologia , Cavalos/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA