Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38558120

RESUMO

Small cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICIs) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all SCLC patients are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared to a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.

2.
Cancer Immunol Res ; : OF1-OF12, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563577

RESUMO

Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.

3.
Cancer Sci ; 115(6): 1763-1777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527308

RESUMO

Overcoming resistance to immune checkpoint inhibitors is an important issue in patients with non-small-cell lung cancer (NSCLC). Transcriptome analysis shows that adenocarcinoma can be divided into three molecular subtypes: terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI), and squamous cell carcinoma (LUSQ) into four. However, the immunological characteristics of these subtypes are not fully understood. In this study, we investigated the immune landscape of NSCLC tissues in molecular subtypes using a multi-omics dataset, including tumor-infiltrating leukocytes (TILs) analyzed using flow cytometry, RNA sequences, whole exome sequences, metabolomic analysis, and clinicopathologic findings. In the PI subtype, the number of TILs increased and the immune response in the tumor microenvironment (TME) was activated, as indicated by high levels of tertiary lymphoid structures, and high cytotoxic marker levels. Patient prognosis was worse in the PP subtype than in other adenocarcinoma subtypes. Glucose transporter 1 (GLUT1) expression levels were upregulated and lactate accumulated in the TME of the PP subtype. This could lead to the formation of an immunosuppressive TME, including the inactivation of antigen-presenting cells. The TRU subtype had low biological malignancy and "cold" tumor-immune phenotypes. Squamous cell carcinoma (LUSQ) did not show distinct immunological characteristics in its respective subtypes. Elucidation of the immune characteristics of molecular subtypes could lead to the development of personalized immune therapy for lung cancer. Immune checkpoint inhibitors could be an effective treatment for the PI subtype. Glycolysis is a potential target for converting an immunosuppressive TME into an antitumorigenic TME in the PP subtype.


Assuntos
Adenocarcinoma de Pulmão , Transportador de Glucose Tipo 1 , Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Idoso , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Perfilação da Expressão Gênica
4.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135691

RESUMO

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Assuntos
Doença Celíaca , Glutens , Camundongos , Animais , Humanos , Coelhos , Glutens/química , Anticorpos Neutralizantes , Antígenos HLA-DQ , Peptídeos/química , Epitopos/química , Camundongos Transgênicos
5.
Cancer Res Commun ; 3(6): 1026-1040, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377611

RESUMO

Resistance to immune checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold, myeloid cell-dominant, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T-cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy-number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC. Significance: The precise TIL profiling classified NSCLC into novel three immune subtypes that correlates with patient outcome, identifying subtype-specific molecular pathways and genomic alterations that should play important roles in constructing subtype-specific immune tumor microenvironments. These classifications of NSCLC based on TIL status are useful for developing personalized immune therapies for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/metabolismo , Linfócitos do Interstício Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Microambiente Tumoral/genética
6.
Nat Commun ; 13(1): 5265, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071036

RESUMO

Identifying a strategy with strong efficacy against non-inflamed tumours is vital in cancer immune therapy. ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody that recognizes glypican-3 and CD3. Here we examine the combination effect of ERY974 and chemotherapy (paclitaxel, cisplatin, and capecitabine) in the treatment of non-inflamed tumours in a xenograft model. ERY974 monotherapy shows a minor antitumour effect on non-inflamed NCI-H446 xenografted tumours, as infiltration of ERY974-redirected T cells is limited to the tumour-stromal boundary. However, combination therapy improves efficacy by promoting T cell infiltration into the tumour centre, and increasing ERY974 distribution in the tumour. ERY974 increases capecitabine-induced cytotoxicity by promoting capecitabine conversion to its active form by inducing thymidine phosphorylase expression in non-inflamed MKN45 tumour through ERY974-induced IFNγ and TNFα in T cells. We show that ERY974 with chemotherapy synergistically and reciprocally increases antitumour efficacy, eradicating non-inflamed tumours.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/farmacologia , Capecitabina , Humanos , Neoplasias/tratamento farmacológico , Linfócitos T
7.
Cancer Discov ; 11(1): 158-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32847940

RESUMO

Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Trifosfato de Adenosina , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
8.
J Diabetes Res ; 2016: 8264830, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839898

RESUMO

Although mitogen-activated protein kinase kinase (MEK) is a key signaling molecule and a negative regulator of insulin action, it is still uncertain whether MEK can be a therapeutic target for amelioration of insulin resistance (IR) in type 2 diabetes (T2D) in vivo. To clarify whether MEK inhibition improves T2D, we examined the effect of continuous MEK inhibition with two structurally different MEK inhibitors, RO5126766 and RO4987655, in mouse models of T2D. RO5126766 and RO4987655 were administered via dietary admixture. Both compounds decreased blood glucose and improved glucose tolerance in doses sufficient to sustain inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation downstream of MEK in insulin-responsive tissues in db/db mice. A hyperinsulinemic-euglycemic clamp test showed increased glucose infusion rate (GIR) in db/db mice treated with these compounds, and about 60% of the increase was attributed to the inhibition of endogenous glucose production, suggesting that the liver is responsible for the improvement of IR. By means of adenovirus-mediated Mek1 shRNA expression, we confirmed that blood glucose levels are reduced by suppression of MEK1 expression in the liver of db/db mice. Taken together, these results suggested that the MEK signaling pathway could be a novel therapeutic target for novel antidiabetic agents.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Resistência à Insulina , Fígado/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Adenoviridae , Animais , Benzamidas/uso terapêutico , Glicemia/análise , Peso Corporal , Cumarínicos/uso terapêutico , Dieta , Modelos Animais de Doenças , Glucose/uso terapêutico , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Masculino , Camundongos , Oxazinas/uso terapêutico , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
9.
Chem Pharm Bull (Tokyo) ; 58(1): 38-44, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20045964

RESUMO

Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is regarded as a promising target for developing new anticoagulant drugs. In previous reports, we described a S3 subsite found in the X-ray crystal structure of compound 2 that bound to FVIIa/soluble tissue factor (sTF). Based on the X-ray crystal structure information and with the aim of improving the inhibition activity for FVIIa/TF and selectivity against other serine proteases, we synthesized derivatives by introducing substituents at position 5 of the indole ring of compound 2. Among them, compound 16 showed high selectivity against other serine proteases. Contrary to our expectations, compound 16 did not occupy the S3-subsite; X-ray structure analysis revealed that compound 16 improved selectivity by forming hydrogen bonds with Gln217, Thr99 and Asn100.


Assuntos
Fator VIIa/antagonistas & inibidores , Fator VIIa/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Biomimética , Cristalografia por Raios X , Fator VIIa/química , Modelos Moleculares , Ligação Proteica , Tromboplastina/antagonistas & inibidores , Tromboplastina/química , Tromboplastina/metabolismo
10.
Bioorg Med Chem Lett ; 18(16): 4533-7, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18674905

RESUMO

Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is regarded as a promising target for developing new anticoagulant drugs. Compound 1 was discovered from focused screening of serine protease-directed compounds from our internal collection. Using parallel synthesis supported by structure-based drug design, we identified peptidemimetic FVIIa/TF inhibitors (compounds 4-11) containing L-Gln or L-Met as the P2 moiety. However, these compounds lacked the selectivity of other serine proteases in the coagulation cascade, especially thrombin. Further optimization of these compounds was carried out with a focus on the P4 moiety. Among the optimized compounds, 12b-f showed improved selectivity.


Assuntos
Química Farmacêutica/métodos , Fator VIIa/antagonistas & inibidores , Serina Endopeptidases/farmacologia , Inibidores de Serina Proteinase/síntese química , Tromboembolia/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Cinética , Modelos Químicos , Conformação Molecular , Peptídeos/química , Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Tromboembolia/enzimologia
11.
Biochem Biophys Res Commun ; 327(2): 589-96, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15629154

RESUMO

Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. Structure-based designs of the P3 moiety in the peptide mimetic factor VIIa inhibitor successfully lead to novel inhibitors with selectivity for FVIIa/TF and extrinsic coagulation the same as or even higher than those of previously reported peptide mimetic factor VIIa inhibitors. X-ray crystal structure analysis reveals that one of the novel inhibitors shows improved selectivity by forming interactions between the inhibitor and FVIIa as expected. Another of the novel inhibitors achieves improved selectivity through an unexpected hydrogen bond with Gln217, with a unique bent conformation in FVIIa/TF accompanied by conformational changes of the inhibitor and the protein.


Assuntos
Materiais Biomiméticos/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Fator VIIa/antagonistas & inibidores , Peptídeos/síntese química , Peptídeos/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Fator VIIa/química , Fator VIIa/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade
12.
Biochem Biophys Res Commun ; 326(4): 859-65, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15607748

RESUMO

Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. A novel peptide mimetic factor VIIa inhibitor, ethylsulfonamide-d-biphenylalanine-Gln-p-aminobenzamidine, shows 100-fold selectivity against thrombin in spite of its large P3 moiety, unlike previously reported FVIIa/TF selective inhibitors. X-ray crystal structure analysis reveals that the large P3 moiety, d-biphenylalanine, and the small P4 moiety, ethylsulfonamide, make novel interactions with the 170-loop and Lys192 of FVIIa/TF, respectively, accompanying ligand-induced conformational changes of the 170-loop, Gln217, and Lys192. Structural comparisons of FVIIa with thrombin and amino acid sequence comparisons among coagulation serine proteases suggest that these interactions play an important role in achieving selective inhibition for FVIIa/TF.


Assuntos
Biomimética/métodos , Inibidores dos Fatores de Coagulação Sanguínea/química , Fator VIIa/antagonistas & inibidores , Modelos Moleculares , Peptídeos/química , Trombina/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Químicos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA