Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35455056

RESUMO

Humans are exposed to both psychological stress (PS) and radiation in some scenarios such as manned deep-space missions. It is of great concern to verify possible enhanced deleterious effects from such concurrent exposure. Pioneer studies showed that chronic restraint-induced PS (CRIPS) could attenuate Trp53 functions and increase gamma-ray-induced carcinogenesis in Trp53-heterozygous mice while CRIPS did not significantly modify the effects on X-ray-induced hematopoietic toxicity in Trp53 wild-type mice. As high-linear energy transfer (LET) radiation is the most important component of space radiation in causing biological effects, we further investigated the effects of CRIPS on high-LET iron-particle radiation (Fe)-induced hematopoietic toxicity in Trp53-heterozygous mice. The results showed that CRIPS alone could hardly induce significant alteration in hematological parameters (peripheral hemogram and micronucleated erythrocytes in bone marrow) while concurrent exposure caused elevated genotoxicity measured as micronucleus incidence in erythrocytes. Particularly, exposure to either CRISP or Fe-particle radiation at a low dose (0.1 Gy) did not induce a marked increase in the micronucleus incidence; however, concurrent exposure caused a significantly higher increase in the micronucleus incidence. These findings indicated that CRIPS could enhance the deleterious effects of high-LET radiation, particularly at a low dose, on the hematopoietic toxicity in Trp53-heterozygous mice.

2.
Radiat Res ; 196(1): 100-112, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901294

RESUMO

Astronauts can develop psychological stress (PS) during space flights due to the enclosed environment, microgravity, altered light-dark cycles, and risks of equipment failure or fatal mishaps. At the same time, they are exposed to cosmic rays including high atomic number and energy (HZE) particles such as iron-56 (Fe) ions. Psychological stress or radiation exposure can cause detrimental effects in humans. An earlier published pioneering study showed that chronic restraint-induced psychological stress (CRIPS) could attenuate Trp53 functions and increase carcinogenesis induced by low-linear energy transfer (LET) γ rays in Trp53-heterozygous (Trp53+/-) mice. To elucidate possible modification effects from CRIPS on high-LET HZE particle-induced health consequences, Trp53+/- mice were received both CRIPS and accelerated Fe ion irradiation. Six-week-old Trp53+/- C57BL/6N male mice were restrained 6 h per day for 28 consecutive days. On day 8, they received total-body Fe-particle irradiation (Fe-TBI, 0.1 or 2 Gy). Metaphase chromosome spreads prepared from splenocytes at the end of the 28-day restraint regimen were painted with the fluorescence in situ hybridization (FISH) probes for chromosomes 1 (green), 2 (red) and 3 (yellow). Induction of psychological stress in our experimental model was confirmed by increase in urinary corticosterone level on day 7 of restraint regimen. Regardless of Fe-TBI, CRIPS reduced splenocyte number per spleen at the end of the 28-day restraint regimen. At 2 Gy, Fe-TBI alone induced many aberrant chromosomes and no modifying effect was detected from CRIPS on induction of aberrant chromosomes. Notably, neither Fe-TBI at 0.1 Gy nor CRIPS alone induced any increase in the frequency of aberrant chromosomes, while simultaneous exposure resulted in a significant increase in the frequency of chromosomal exchanges. These findings clearly showed that CRIPS could enhance the frequency of chromosomal exchanges induced by Fe-TBI at a low dose of 0.1 Gy.


Assuntos
Aberrações Cromossômicas , Heterozigoto , Ferro/administração & dosagem , Restrição Física , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/metabolismo , Baço/patologia , Baço/efeitos da radiação
3.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355142

RESUMO

Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.

4.
Biochem J ; 475(1): 75-85, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29127254

RESUMO

The translocator protein (TSPO) has been proposed to act as a key component in a complex important for mitochondrial cholesterol importation, which is the rate-limiting step in steroid hormone synthesis. However, TSPO function in steroidogenesis has recently been challenged by the development of TSPO knockout (TSPO-KO) mice, as they exhibit normal baseline gonadal testosterone and adrenal corticosteroid production. Here, we demonstrate that despite normal androgen levels in young male TSPO-KO mice, TSPO deficiency alters steroidogenic flux and results in reduced total steroidogenic output. Specific reductions in the levels of progesterone and corticosterone as well as age-dependent androgen deficiency were observed in both young and aged male TSPO-KO mice. Collectively, these findings indicate that while TSPO is not critical for achieving baseline testicular and adrenal steroidogenesis, either indirect effects of TSPO on steroidogenic processes, or compensatory mechanisms and functional redundancy, lead to subtle steroidogenic abnormalities which become exacerbated with aging.


Assuntos
Glândulas Suprarrenais/metabolismo , Envelhecimento/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores de GABA/genética , Testículo/metabolismo , Glândulas Suprarrenais/crescimento & desenvolvimento , Envelhecimento/metabolismo , Aldosterona/biossíntese , Androgênios/biossíntese , Animais , Corticosterona/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Progesterona/biossíntese , Receptores de GABA/deficiência , Testículo/crescimento & desenvolvimento
5.
J Neurosci ; 36(45): 11544-11558, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911758

RESUMO

Chemogenetic manipulation of neuronal activities has been enabled by a designer receptor (designer receptor exclusively activated by designer drugs, DREADD) that is activated exclusively by clozapine-N-oxide (CNO). Here, we applied CNO as a functional reporter probe to positron emission tomography (PET) of DREADD in living brains. Mutant human M4 DREADD (hM4Di) expressed in transgenic (Tg) mouse neurons was visualized by PET with microdose [11C]CNO. Deactivation of DREADD-expressing neurons in these mice by nonradioactive CNO at a pharmacological dose could also be captured by arterial spin labeling MRI (ASL-MRI). Neural progenitors derived from hM4Di Tg-induced pluripotent stem cells were then implanted into WT mouse brains and neuronal differentiation of the grafts could be imaged by [11C]CNO-PET. Finally, ASL-MRI captured chemogenetic functional manipulation of the graft neurons. Our data provide the first demonstration of multimodal molecular/functional imaging of cells expressing a functional gene reporter in the brain, which would be translatable to humans for therapeutic gene transfers and cell replacements. SIGNIFICANCE STATEMENT: The present work provides the first successful demonstration of in vivo positron emission tomographic (PET) visualization of a chemogenetic designer receptor (designer receptor exclusively activated by designer drugs, DREADD) expressed in living brains. This technology has been applied to longitudinal PET reporter imaging of neuronal grafts differentiated from induced pluripotent stem cells. Differentiated from currently used reporter genes for neuroimaging, DREADD has also been available for functional manipulation of target cells, which could be visualized by functional magnetic resonance imaging (fMRI) in a real-time manner. Multimodal imaging with PET/fMRI enables the visualization of the differentiation of iPSC-derived neural progenitors into mature neurons and DREADD-mediated functional manipulation along the time course of the graft and is accordingly capable of fortifying the utility of stem cells in cell replacement therapies.


Assuntos
Encéfalo/citologia , Genes Reporter , Células-Tronco Pluripotentes Induzidas/citologia , Imagem Multimodal/métodos , Células-Tronco Neurais/transplante , Neurônios/citologia , Neurônios/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transplante de Células-Tronco/métodos
6.
Cancer Sci ; 106(3): 217-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529563

RESUMO

Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and ß-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/genética , Carcinogênese/genética , Neoplasias do Colo/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Adenocarcinoma/induzido quimicamente , Proteína da Polipose Adenomatosa do Colo/biossíntese , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese/imunologia , Carcinogênese/efeitos da radiação , Colite/induzido quimicamente , Neoplasias do Colo/induzido quimicamente , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Reparo de Erro de Pareamento de DNA/genética , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 1 Homóloga a MutL , Radiação Ionizante , Proteína Supressora de Tumor p53/biossíntese , beta Catenina/biossíntese
7.
Carcinogenesis ; 31(9): 1694-701, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20616149

RESUMO

Accurate cancer risk assessment of low-dose radiation poses many challenges that are partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. To elucidate characteristic features of radiation-induced tumors, we analyzed 163 medulloblastomas that developed either spontaneously or after X-ray irradiation at doses of 0.05-3 Gy in Ptch1 heterozygous mice. All spontaneous tumors showed loss of heterozygosity in broad regions on chromosome 13, with losses at all consecutive markers distal to Ptch1 locus (S-type). In contrast, all tumors that developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 with distal markers retained (R-type). There was a clear dose-dependent increase in the proportion of R-type tumors within the intermediate dose range, indicating that the R-type change is a reliable radiation signature. Importantly, the incidence of R-type tumors increased significantly (P = 0.007) at a dose as low as 50 mGy. Integrated array-comparative genomic hybridization and expression microarray analyses demonstrated that expression levels of many genes around the Ptch1 locus faithfully reflected the signature-associated reduction in genomic copy number. Furthermore, 573 genes on other chromosomes were also expressed differently between S-type and R-type tumors. They include genes whose expression changes during early cerebellar development such as Plagl1 and Tgfb2, suggesting a recapitulation of gene subsets functioning at distinct developmental stages. These findings provide, for the first time, solid experimental evidence for a significant increase in cancer risk by low-dose radiation at diagnostic levels and imply that radiation-induced carcinogenesis accompanies both genomic and gene expression signatures.


Assuntos
Perfilação da Expressão Gênica , Genômica , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Receptores de Superfície Celular/fisiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hibridização Genômica Comparativa , DNA de Neoplasias/genética , Relação Dose-Resposta à Radiação , Heterozigoto , Perda de Heterozigosidade , Meduloblastoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Induzidas por Radiação/radioterapia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Patched , Receptor Patched-1 , RNA Mensageiro/genética , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Raios X
8.
Mutat Res ; 640(1-2): 27-37, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18242641

RESUMO

Carcinogenesis in humans is thought to result from exposure to numerous environmental factors. Little is known, however, about how these different factors work in combination to cause cancer. Because thymic lymphoma is a good model of research for combined exposure, we examined the occurrence of mutations in thymic DNA following exposure of B6C3F1 gpt-delta mice to both ionizing radiation and N-ethyl-N-nitrosourea (ENU). Mice were exposed weekly to whole body X-irradiation (0.2 or 1.0 Gy), ENU (200 ppm) in the drinking water, or X-irradiation followed by ENU treatment. Thereafter, genomic DNA was prepared from the thymus and the number and types of mutations in the reporter transgene gpt was determined. ENU exposure alone increased mutant frequency by 10-fold compared to untreated controls and over 80% of mutants had expanded clonally. X-irradiation alone, at either low or high dose, unexpectedly, reduced mutant frequency. Combined exposure to 0.2 Gy X-rays with ENU dramatically decreased mutant frequency, specifically G:C to A:T and A:T to T:A mutations, compared to ENU treatment alone. In contrast, 1.0 Gy X-rays enhanced mutant frequency by about 30-fold and appeared to accelerate clonal expansion of mutated cells. In conclusion, repeated irradiation with 0.2 Gy X-rays not only reduced background mutation levels, but also suppressed ENU-induced mutations and clonal expansion. In contrast, 1.0 Gy irradiation in combination with ENU accelerated clonal expansion of mutated cells. These results indicate that the mode of the combined mutagenic effect is dose dependent.


Assuntos
Etilnitrosoureia/toxicidade , Mutagênese/efeitos da radiação , Linfócitos T/efeitos da radiação , Timo/efeitos dos fármacos , Timo/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Testes de Mutagenicidade , Linfócitos T/efeitos dos fármacos , Raios X
9.
Hum Mol Genet ; 12(18): 2293-9, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12915449

RESUMO

Mutations in the Recql4 gene are very likely responsible for a subset of Rothmund-Thomson syndrome (RTS) cases, but until now there has been no animal model to confirm this. Knockout mice in which the Recql4 gene is disrupted at exons 5-8 exhibit embryonic lethality at embryonic day 3.5-6.5. We generated a helicase activity-inhibited mouse by deleting exon 13 of Recql4, which is one of the coding exons of the consensus RecQ-helicase domain. This domain is the primary site of mutations that have been identified in RTS patients. The exon 13-deleted Recql4-deficient mice are viable, but exhibit severe growth retardation and abnormalities in several tissues, and embryonic fibroblasts show a defect in cell proliferation. Abnormalities in the Recql4-deficient mice are similar to those in RTS patients, suggesting that defects in the Recql4 gene may indeed be responsible for RTS. We speculate that the loss of Recql4 helicase activity results in the prematurely aged appearance observed in some RecQ helicase diseases.


Assuntos
Adenosina Trifosfatases/deficiência , Peso Corporal/genética , DNA Helicases/deficiência , Fibroblastos/metabolismo , Anormalidades da Pele/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , DNA Helicases/genética , DNA Helicases/metabolismo , Embrião de Mamíferos , Marcação de Genes , Mutação em Linhagem Germinativa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Radiação Ionizante , RecQ Helicases , Síndrome de Rothmund-Thomson , Anormalidades da Pele/patologia , Fatores de Tempo , Raios Ultravioleta , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA