Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(29): 10903-10912, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439544

RESUMO

Application of the prostate-specific antigen (PSA) test, which measures PSA levels in blood, is standard in prostate cancer (PCa) screening. However, because PSA levels may be elevated for reasons other than PCa, it leads to high rates of misdiagnosis and overtreatment. Recently, alteration in the N-glycan sialylation of PSA, specifically increased levels of α2-3-linked N-acetylneuraminic acid (α2-3-Neu5Ac or α2-3-sialic acid), was identified as a potential biomarker for clinically significant PCa. Here, we introduce a robust top-down native mass spectrometry (MS) approach, performed using a combination of α2-3-Neu5Ac-specific and nonspecific neuraminidases and employing center-of-mass monitoring (CoMMon), for quantifying the levels of α2-3-Neu5Ac as a fraction of total N-linked Neu5Ac present on PSA extracted from blood serum. To illustrate the potential of the assay for clinical diagnosis and disease staging of PCa, the percentages of α2-3-Neu5Ac on PSA (%α23PSA) in the serum of low-grade (International Society of Urological Pathology Grade Group/GG1), intermediate-grade (GG2), and high-grade (GG3,4,5) PCa individuals were measured. We observed a high sensitivity (85.5%) and specificity (84.6%) for discrimination of GG1 from clinically significant GG2-5 patients when using a %α23PSA test cut-off of 28.0%. Our results establish that the %α23PSA in blood serum PSA, which can be precisely measured in a non-invasive manner with our dual neuraminidase native MS/CoMMon assay, can discriminate between clinically significant PCa (GG2-5) and low-grade PCa (GG1). Such discrimination has not been previously achieved and represents an important clinical need. This assay could greatly improve the standard PSA test and serve as a valuable PCa diagnostic tool.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Ácido N-Acetilneuramínico , Neoplasias da Próstata/patologia , Biomarcadores , Biópsia Líquida , Biópsia
2.
Nat Commun ; 11(1): 5091, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037195

RESUMO

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer's disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns.


Assuntos
Polissacarídeos/análise , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Células CHO , Cricetulus , Feminino , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Células K562 , Espectrometria de Massas , Polissacarídeos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/isolamento & purificação , Ácidos Siálicos/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Baço/citologia , Baço/metabolismo , Estreptavidina/metabolismo
3.
J Am Soc Mass Spectrom ; 28(10): 2054-2065, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28681358

RESUMO

The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. Graphical Abstract ᅟ.


Assuntos
Gramicidina/química , Nanoestruturas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetatos/química , Butanóis/química , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Gases/química , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos/química , Fosfatidilcolinas/química , Multimerização Proteica , Espectrometria de Massas por Ionização por Electrospray/instrumentação
4.
J Am Soc Mass Spectrom ; 27(5): 876-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26944280

RESUMO

Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αß-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.


Assuntos
Antineoplásicos/metabolismo , Descoberta de Drogas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/análise , Química Encefálica , Colchicina/análogos & derivados , Colchicina/análise , Colchicina/metabolismo , Ligação Proteica , Suínos , Moduladores de Tubulina/análise
5.
PLoS Pathog ; 10(8): e1004334, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25165982

RESUMO

The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/enzimologia , Acetilação , Proteínas de Bactérias/química , Sequência de Bases , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Dados de Sequência Molecular , Estrutura Quaternária de Proteína
6.
J Biol Chem ; 289(9): 6006-19, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24398681

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked ß-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating ß-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel ß-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.


Assuntos
Carboidratos Epimerases/química , Proteínas Periplásmicas/química , Pseudomonas syringae/enzimologia , Alginatos/química , Cálcio/química , Cálcio/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Catálise , Cristalografia por Raios X , Ácido Glucurônico/biossíntese , Ácido Glucurônico/química , Ácido Glucurônico/genética , Ácidos Hexurônicos/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Estrutura Secundária de Proteína , Pseudomonas syringae/genética , Relação Estrutura-Atividade
7.
J Am Soc Mass Spectrom ; 24(10): 1573-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23943432

RESUMO

The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (ß-D-Galp-(1→3)-ß-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-ß-D-Galp-(1→4)-ß-D-Glcp (GM1)) and corresponding glycosphingolipid (ß-D-Galp-(1→3)-ß-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-ß-D-Galp-(1→4)-ß-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)(n+) ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)(n-) ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)(n+/-) ions, as well as for deprotonated (S4 + 4Btl)(n-) ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)(n+) ions was observed as a minor pathway. The (S4 + 4Btl)(n+) ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)(15+) ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.


Assuntos
Íons/química , Complexos Multiproteicos/química , Oligossacarídeos/química , Sequência de Carboidratos , Toxina da Cólera/química , Gases/química , Íons/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Nanotecnologia , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
8.
J Am Soc Mass Spectrom ; 24(7): 988-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23702709

RESUMO

Intermolecular interactions in the gaseous ions of two protein-ligand complexes, a single chain antibody (scFv) and its trisaccharide ligand (α-D-Galp-(1→2)-[α-D-Abep-(1→3)]-α-Manp-OCH3, L1) and streptavidin homotetramer (S4) and biotin (B), were investigated using a collision-induced dissociation (CID)-functional group replacement (FGR) strategy. CID was performed on protonated ions of a series of structurally related complexes based on the (scFv + L1) and (S4 + 4B) complexes, at the +10 and +13 charge states, respectively. Intermolecular interactions were identified from decreases in the collision energy required to dissociate 50% of the reactant ion (Ec50) upon modification of protein residues or ligand functional groups. For the (scFv + L1)(10+) ion, it was found that deoxygenation of L1 (at Gal C3 and C6 and Man C4 and C6) or mutation of His101 (to Ala) resulted in a decrease in Ec50 values. These results suggest that the four hydroxyl groups and His101 participate in intermolecular H-bonds. These findings agree with those obtained using the blackbody infrared radiative dissociation (BIRD)-FGR method. However, the CID-FGR method failed to reveal the relative strengths of the intermolecular interactions or establish Man C4 OH and His101 as an H-bond donor/acceptor pair. The CID-FGR method correctly identified Tyr43, but not Ser27, Trp79, and Trp120, as a stabilizing contact in the (S4 + 4B)(13+) ion. In fact, mutation of Trp79 and Trp120 led to an increase in the Ec50 value. Taken together, these results suggest that the CID-FGR method, as implemented here, does not represent a reliable approach for identifying interactions in the gaseous protein-ligand complexes.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Cátions/química , Gases , Ligação de Hidrogênio , Raios Infravermelhos , Ligantes , Anticorpos de Cadeia Única/química , Estreptavidina/química , Trissacarídeos/química
9.
J Am Chem Soc ; 134(40): 16586-96, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22984964

RESUMO

Results of the first detailed study of the structure and kinetic stability of the model high-affinity protein-ligand interaction between biotin (B) and the homotetrameric protein complex streptavidin (S(4)) in the gas phase are described. Collision cross sections (Ω) measured for protonated gaseous ions of free and ligand-bound truncated (residues 13-139) wild-type (WT) streptavidin, i.e., S(4)(n+) and (S(4)+4B)(n+) at charge states n = 12-16, were found to be independent of charge state and in agreement (within 10%) with values estimated for crystal structures reported for S(4) and (S(4)+4B). These results suggest that significant structural changes do not occur upon transfer of the complexes from solution to the gas phase by electrospray ionization. Temperature-dependent rate constants were measured for the loss of B from the protonated (S(4)+4B)(n+) ions. Over the temperature range investigated, the kinetic stability increases with decreasing charge state, from n = 16 to 13, but is indistinguishable for n = 12 and 13. A comparison of the activation energies (E(a)) measured for the loss of B from the (S(4)+4B)(13+) ions composed of WT streptavidin and five binding site mutants (Trp79Phe, Trp108Phe, Trp120Phe, Ser27Ala, and Tyr43Ala) suggests that at least some of the specific intermolecular interactions are preserved in the gas phase. The results of molecular dynamics simulations performed on WT (S(4)+4B)(12+) ions with different charge configurations support this conclusion. The most significant finding of this study is that the gaseous WT (S(4)+4B)(n+) ions at n = 12-14, owing to a much larger E(a) (by as much as 13 kcal mol(-1)) for the loss of B, are dramatically more stable kinetically at 25 °C than the (S(4)+4B) complex in aqueous neutral solution. The differences in E(a) values measured for the gaseous (S(4)+4B)(n+) ions and solvated (S(4)+4B) complex can be largely accounted for by a late dissociative transition state and the rehydration of B and the protein binding cavity in solution.


Assuntos
Biotina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Estreptavidina/metabolismo , Streptomyces/metabolismo , Sítios de Ligação , Biotina/química , Gases/química , Gases/metabolismo , Íons/química , Íons/metabolismo , Cinética , Ligação Proteica , Multimerização Proteica , Estreptavidina/química , Streptomyces/química , Termodinâmica
10.
J Am Chem Soc ; 134(13): 5931-7, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22409493

RESUMO

Deuterium kinetic isotope effects (KIEs) are reported for the first time for the dissociation of a protein-ligand complex in the gas phase. Temperature-dependent rate constants were measured for the loss of neutral ligand from the deprotonated ions of the 1:1 complex of bovine ß-lactoglobulin (Lg) and palmitic acid (PA), (Lg + PA)(n-) → Lg(n-) + PA, at the 6- and 7- charge states. At 25 °C, partial or complete deuteration of the acyl chain of PA results in a measurable inverse KIE for both charge states. The magnitude of the KIEs is temperature dependent, and Arrhenius analysis of the rate constants reveals that deuteration of PA results in a decrease in activation energy. In contrast, there is no measurable deuterium KIE for the dissociation of the (Lg + PA) complex in aqueous solution at pH 8. Deuterium KIEs were calculated using conventional transition-state theory with an assumption of a late dissociative transition state (TS), in which the ligand is free of the binding pocket. The vibrational frequencies of deuterated and non-deuterated PA in the gas phase and in various solvents (n-hexane, 1-chlorohexane, acetone, and water) were established computationally. The KIEs calculated from the corresponding differences in zero-point energies account qualitatively for the observation of an inverse KIE but do not account for the magnitude of the KIEs nor their temperature dependence. It is proposed that the dissociation of the (Lg + PA) complex in aqueous solution also proceeds through a late TS in which the acyl chain is extensively hydrated such that there is no significant differential change in the vibrational frequencies along the reaction coordinate and, consequently, no significant KIE.


Assuntos
Deutério , Gases/química , Lactoglobulinas/química , Ácido Palmítico/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Cinética , Lactoglobulinas/metabolismo , Ácido Palmítico/metabolismo , Ligação Proteica , Solventes/química , Temperatura
11.
J Am Chem Soc ; 131(44): 15980-1, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19886690

RESUMO

The results of time-resolved thermal dissociation measurements and molecular dynamic simulations are reported for gaseous deprotonated ions of the specific complexes of bovine beta-lactoglobulin (Lg) and a series of the fatty acids (FA): CH(3)(CH(2))(x)COOH, where x = 10, 12, 14, and 16. At the reaction temperatures investigated, 25-66 degrees C, the gaseous ions dissociate exclusively by the loss of neutral FA. According to the kinetic data, and confirmed by ion mobility measurements, the (Lg + FA)(7-) ions exist in two, noninterconverting structures designated the fast (Lg + FA)(f)(7-) and slow (Lg + FA)(s)(7-) components. The Arrhenius parameters for both components are sensitive to the length of the FA aliphatic chain. For the fast components, the activation energy (E(a)) increases in a nearly linear fashion, with each methylene group contributing approximately 0.8 kcal mol(-1) to E(a). This is similar to the contribution of -CH(2)- groups to the solvation of n-alkanes in nonpolar solvents. Furthermore, the magnitude of the E(a) values for the fast components is similar to the solvation enthalpies expected for the FA aliphatic chains in nonpolar and weakly polar solvents. The E(a) values determined for the slow components are larger than those of the fast components. Furthermore, the E(a) values do not vary in a simple fashion with the length of the aliphatic chain. Molecular dynamics simulations performed on the (Lg + PA) complex revealed that, depending on the charge configuration, the (Lg + PA)(7-) ion can exist in two distinct structures, which differ primarily by the position of the EF loop. In the open structure the EF loop is positioned away from the entrance to the hydrophobic cavity and the ligand is stabilized only through nonpolar intermolecular interactions. In the closed structure the EF loop covers the entrance of the cavity and the carboxylic group of PA participates in H-bonds with residues on the EF loop or residues located at the entrance of the cavity. The loss of ligand from the closed structure would require both the cleavage of the H-bonds and the nonpolar contacts. Taken together, these results suggest that the aliphatic chain of the FA remains bound within the hydrophobic cavity in the gas phase (Lg + FA)(7-) ions. Furthermore, the barrier to dissociation of the (Lg + FA)(f)(7-) ions reflects predominantly the cleavage of the nonpolar intermolecular interactions, while for the (Lg + FA)(s)(7-) ions the FA is stabilized by both nonpolar interactions and H-bonds.


Assuntos
Ácidos Graxos/química , Gases/química , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química , Animais , Bovinos , Ligantes , Simulação de Dinâmica Molecular , Proteínas/química
12.
Anal Chem ; 81(18): 7801-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19746998

RESUMO

The use of gas phase additives to stabilize noncovalent protein complexes in electrospray ionization mass spectrometry (ES-MS) is demonstrated for two protein-ligand interactions, an enzyme-small molecule inhibitor complex, and a protein-disaccharide complex. It is shown that the introduction of gas phase imidazole into the ES ion source effectively protects gas phase protein-ligand complexes against in-source dissociation. The stabilizing effect of imidazole vapor is comparable to that observed upon addition of imidazole to the ES solution. The introduction of sulfur hexafluoride, at high partial pressure, into the source region also effectively suppresses in-source dissociation of protein complexes. It is proposed that evaporative cooling is the primary mechanism responsible for the stabilizing effects observed for the gas phase additives.


Assuntos
Gases/química , Ligantes , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Benzamidinas/química , Bovinos , Dissacarídeos/química , Imidazóis/química , Inibidores de Serina Proteinase/química , Hexafluoreto de Enxofre/química , Tripsina/química
13.
J Am Soc Mass Spectrom ; 18(4): 688-92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229576

RESUMO

The effects of amino acid substitutions on the product ion charge distributions for protonated and deprotonated homogeneous and heterogeneous multiprotein complexes in the gas phase are studied using Fourier-transform mass spectrometry and the blackbody infrared radiative dissociation technique. Notably, it is shown that a single amino acid substitution in the leaving subunit can cause a small but measurable change in product ion charge distribution. Evidence that the degree of charge enrichment of the leaving subunit is influenced by the number of strongly basic or acidic residues within the subunit for the protonated and deprotonated complexes, respectively, is reported.


Assuntos
Aminoácidos/química , Complexos Multiproteicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Gases , Raios Infravermelhos , Toxina Shiga I/química , Toxina Shiga II/química
14.
J Am Soc Mass Spectrom ; 18(4): 617-31, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17204428

RESUMO

Thermal dissociation experiments, implemented with blackbody infrared radiative dissociation and Fourier-transform ion cyclotron resonance mass spectrometry, are performed on gaseous protonated and deprotonated ions of the homopentameric B subunits of Shiga toxin 1 (Stx1 B5) and Shiga toxin 2 (Stx2 B5) and the homotetramer streptavidin (S4). Dissociation of the gaseous, multisubunit complexes proceeds predominantly by the loss of a single subunit. Notably, the fractional partitioning of charge between the product ions, i.e., the leaving subunit and the resulting multimer, for a given complex is, within error, constant over the range of charge states investigated. The Arrhenius activation parameters (E(a), A) measured for the loss of subunit decrease with increasing charge state of the complex. However, the parameters for the protonated and deprotonated ions, with the same number of charges, are indistinguishable. The influence of the complex charge state on the dissociation pathways and the magnitude of the dissociation E(a) are modeled theoretically with the discrete charge droplet model (DCDM) and the protein structure model (PSM), wherein the structure of the subunits is considered. Importantly, the major subunit charge states observed experimentally for the Stx1 B5(n+/-) ions correspond to the minimum energy charge distribution predicted by DCDM and PSM assuming a late dissociative transition-state (TS); while for structurally-related Stx2 B5(n+) ions, the experimental charge distribution corresponds to an early TS. It is proposed that the lateness of the TS is related, in part, to the degree of unfolding of the leaving subunit, with Stx1 B being more unfolded than Stx2 B. PSM, incorporating significant subunit unfolding is necessary to account for the product ions observed for the S4(n+) ions. The contribution of Coulombic repulsion to the dissociation E(a) is quantified and the intrinsic activation energy is estimated for the first time.


Assuntos
Gases/química , Complexos Multiproteicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura Alta , Íons/química , Prótons , Toxina Shiga I/química , Toxina Shiga II/química , Estreptavidina/química
15.
J Am Soc Mass Spectrom ; 16(12): 1957-68, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16242954

RESUMO

The assembly of the B subunits of Shiga toxins (Stx) 1 and 2 and the influence of solution conditions (protein concentration, temperature, pH, and ionic strength) on it are investigated using temperature-controlled nanoflow electrospray (nano-ES) ionization and Fourier-transform ion cyclotron resonance mass spectrometry. Despite the similar higher order structure predicted by X-ray crystallography analysis, the B(5) homopentamers of Stx1 and Stx2 exhibit differences in stability under the solution conditions investigated. At solution temperatures ranging from 0 to 60 degrees C and subunit concentrations ranging from 5 to 85 microM, the Stx1 B subunit exists almost entirely as the homopentamer in aqueous solutions, independent of the ionic strength. In contrast, the degree of assembly of Stx2 B subunit is strongly dependent on temperature, subunit concentration, and ionic strength. At subunit concentrations of more than 50 microM, the Stx2 B subunit exists predominantly as a pentamer, although smaller multimers (dimer, trimer, and tetramer) are also evident. At lower concentrations, the Stx2 B subunit exists predominantly as monomer and dimer. The relative abundance of multimeric species of the Stx2 B subunit was insensitive to the ion source conditions, suggesting that gas-phase dissociation of the pentamer ions in the source does not influence the mass spectrum. Blackbody infrared radiative dissociation of the protonated B(5) ions of Stx2 at the +12 and +13 charge states proceeds, at reaction temperatures of 120 to 180 degrees C, predominantly by the ejection of a single subunit from the complex. Dissociation into dimer and trimer ions constitutes a minor pathway. It follows that the dimer and trimer ions and, likely, the monomer ions observed in the nano-ES mass spectra of Stx2 B subunit originated in solution and not from gas-phase reactions. It is concluded that, under the solution conditions investigated, the homopentamer of Stx2 B subunit is thermodynamically less stable than that of Stx1 B subunit. Arrhenius activation parameters determined for the protonated Stx2 B(5) ions at the +12 and +13 charge states were compared with values reported for the corresponding B(5) ions of Stx1 B subunit. In contrast to the differential stability of the Stx1 and Stx2 B pentamers in solution, the dissociation activation energies (E(a)) determined for the gaseous complexes are indistinguishable at a given charge state. The similarity in the E(a) values suggests that the protonated pentamer ions of both toxins are stabilized by similar intersubunit interactions in the gas phase, a result that is in agreement with the X-ray crystal structures of the holotoxins.


Assuntos
Nanotecnologia/métodos , Subunidades Proteicas/análise , Subunidades Proteicas/química , Toxina Shiga I/análise , Toxina Shiga I/química , Toxina Shiga II/análise , Toxina Shiga II/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ciclotrons , Estabilidade de Medicamentos , Gases/análise , Gases/química , Concentração de Íons de Hidrogênio , Transição de Fase , Conformação Proteica , Desnaturação Proteica , Soluções , Temperatura
16.
J Am Chem Soc ; 125(45): 13630-1, 2003 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-14599179

RESUMO

Arrhenius parameters, obtained with the blackbody infrared radiative dissociation technique, are reported for the dissociation of a gaseous protonated complex of an antibody single chain fragment and its native trisaccharide antigen originating from nonspecific interactions during the nanoelectrospray process. It is shown that the nonspecific complex is kinetically more stable and, at the +10 charge state, energetically more stable than the corresponding specific complex originating from interactions in solution. This is the first demonstration that a bioactive recognition site is not energetically preferred in a protein-ligand complex in the gas phase.


Assuntos
Fragmentos de Imunoglobulinas/química , Trissacarídeos/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Sequência de Carboidratos , Gases , Fragmentos de Imunoglobulinas/metabolismo , Cinética , Dados de Sequência Molecular , Temperatura , Termodinâmica , Trissacarídeos/metabolismo
17.
Anal Chem ; 75(19): 4945-55, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14708765

RESUMO

The influence of solution pH, analyte concentration and in-source dissociation on the measurement of the association constant for a single chain variable fragment of a monoclonal antibody (scFv) and its native trisaccharide ligand by nanoelectrospray-Fourier transform ion cyclotron resonance mass spectrometery has been systematically investigated. From the results of this study, experimental conditions that preserve the original distribution of bound and unbound protein in solution into the gas phase, such that the nanoES mass spectrum provides a quantitative measure of the solution composition, were identified. These include the use of short spray durations (<10 min) to minimize pH changes, equimolar concentrations of protein and ligand to minimize the formation of nonspecific complexes, and short accumulation times (<2 s) in the hexapole of the ion source to avoid collisional heating and dissociation of the gaseous complex. Application of this methodology to the scFv and a series of carbohydrate ligands yields results that are in agreement with values previously determined by isothermal titration calorimetry. Competitive binding experiments performed on solutions containing the scFv and a mixture of carbohydrate ligands were also found to yield accurate association constants.


Assuntos
Nanotecnologia/métodos , Oligossacarídeos/análise , Proteínas/análise , Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Fourier , Oligossacarídeos/metabolismo , Ligação Proteica/fisiologia , Soluções/metabolismo
18.
J Am Soc Mass Spectrom ; 13(12): 1432-42, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12484463

RESUMO

The influence of charge on the thermal dissociation of gaseous, protonated, homodimeric, protein ecotin ions produced by nanoflow electrospray ionization (nanoES) was investigated using the blackbody infrared radiative dissociation technique. Dissociation of the protonated dimer, (E2 + nH)(n+) congruent to E2(n+) where n = 14-17, into pairs of monomer ions is the dominant reaction at temperatures from 126 to 175 degrees C. The monomer pair corresponding to the most symmetric charge distribution is preferred, although 50-60% of the monomer product ions correspond to an asymmetric partitioning of charge. The relative abundance of the different monomer ion pairs produced from E2(14+), E2(15+), and E2(16+) depends on reaction time, with the more symmetric charge distribution pair dominating at longer times. The relative yield of monomer ions observed late in the reaction is independent of temperature indicating that proton transfer between the monomers does not occur during dissociation and that the different monomer ion pairs are formed from dimer ions which differ in the distribution of charge between the monomers. For E2(17+), the yield of monomer ions is independent of reaction time but does exhibit slight temperature dependence, with higher temperatures favoring the monomers corresponding to most symmetric charge distribution. The charge distribution in the E2(15+) and E2(16+) dimer ions influences the dissociation kinetics, with the more asymmetric distribution resulting in greater reactivity. In contrast, the charge distribution has no measurable effect on the dissociation kinetics and energetics of the E2(17+) dimer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli , Proteínas Periplásmicas , Proteínas de Bactérias/efeitos da radiação , Temperatura Alta , Raios Infravermelhos , Cinética , Desnaturação Proteica , Prótons , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
19.
J Am Chem Soc ; 124(20): 5902-13, 2002 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12010066

RESUMO

Blackbody infrared radiative dissociation (BIRD) and functional group replacement are used to map the location and strength of hydrogen bonds between an antibody single chain fragment (scFv) and its natural trisaccharide receptor, alpha-D-Galp (1-->2)[alpha-D-Abep (1-->3)]alpha-D-Manp1-->OMe (1), in the gaseous, multiply protonated complex. Arrhenius activation parameters (E(a) and A) are reported for the loss of 1 and a series of monodeoxy trisaccharide congeners (5-8 identical with tri) from the (scFv + tri + 10H)(+10) complex. The energetic contribution of the specific oligosaccharide OH groups to the stability of the (scFv + 1 + 10H)(+10) complex is determined from the differences in E(a) measured for the trisaccharide analogues and 1 (55.2 kcal/mol). A decrease of 6 to 11 kcal/mol in E(a), measured for the monodeoxy trisaccharides, indicates that the deleted OH groups interact strongly with the scFv and that they account for a majority of the stabilizing intermolecular interactions. A partial map of the hydrogen bond donor/acceptor groups of 1 and the strength of the interactions is presented for the protonated +10 complex. A comparison of the gas-phase map with the crystal structure indicates that significant structural differences exist. The hydroxyl groups located outside of the binding pocket, and exposed to solvent in solution, participate in new protein-oligosaccharide hydrogen bonds in the gas phase. The decrease in kinetic and energetic stability of the (scFv + 2 + nH)(n)()(+) complex with increasing charge-state is attributed to conformational differences in the binding region induced by electrostatic repulsion. The similarity in the Arrhenius parameters for the +9 and +10 charge states suggests that repulsion effects on the structure of the binding region are negligible below +11.


Assuntos
Fragmentos de Imunoglobulinas/química , Trissacarídeos/química , Sequência de Carboidratos , Gases , Temperatura Alta , Ligação de Hidrogênio , Fragmentos de Imunoglobulinas/metabolismo , Cinética , Dados de Sequência Molecular , Termodinâmica , Trissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA