Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(1): 8, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451066

RESUMO

The aim of this study was formulating a new-generation antibacterial dressing in a form of polymer-based hybrid nanofiber-nanoparticles, effective on Gram-negative and Gram-positive bacteria using silver sulfadiazine (SSD), an FDA-approved topical antibiotic. In this study, SSD nanoparticles were prepared with chitosan for taking the advantage of antibacterial and wound healing properties. Chitosan nanoparticles of SSD were prepared by using tripolyphosphate (TPP) or sulfobutylether-ß-cyclodextrin (SBE-ß-CD) as crosslinkers via ionic gelation method and then loaded to PVP-K30 and PVP-K90 nanofibers to obtain polymer-based nanofiber-nanoparticles. SSD-loaded chitosan nanoparticles prepared with SBE-ß-CD had lower particle size (359.6 ± 19.9 nm) and polydispersity index (0.364 ± 0.113) as well, indicating a more desired particle size distribution but lower encapsulation efficiency (56.04% ± 4.33). It was found that loading drug in SBE-ß-CD crosslinked nanoparticles and dispersing in nanofiber matrix lowered SSD release compared to  TPP crosslinked nanoparticle-loaded nanofibers. Drug release obtained by both TPP or SBE-ß-CD crosslinked nanoparticle-loaded PVP-K30 nanofibers is significantly higher than nanoparticle-loaded PVP-K90 nanofibers, indicating that SSD release was mainly affected by polymer type. SSD nanoparticle-loaded PVP-K30 nanofibers were found to be effective against Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). SSD release was sustained by PVP-K90, resulting in lower antibacterial efficiency especially against Gram-positive bacteria. PVP-K30-based nanofiber-CS nanoparticle hybrids offer a new platform by combining and improving advantages of nanofibers and nanoparticles for obtaining controlled drug release and antibacterial efficacy.


Assuntos
Quitosana , Nanofibras , Nanopartículas , Sulfadiazina de Prata/farmacologia , Bandagens , Antibacterianos/farmacologia , Povidona , Polímeros
2.
Arh Hig Rada Toksikol ; 73(4): 260-269, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607722

RESUMO

Moxifloxacin (MOX) is an important antibiotic commonly used in the treatment of recurrent Escherichia coli (E. coli) infections. The aim of this study was to investigate its antibacterial efficiency when used with solid lipid nanoparticles (SNLs) and nanostructured lipid carriers (NLCs) as delivery vehicles. For this purpose we designed two SLNs (SLN1 and SLN2) and two NLCs (NLC1 and NLC2) of different characteristics (particle size, size distribution, zeta potential, and encapsulation efficiency) and loaded them with MOX to determine its release, antibacterial activity against E. coli, and their cytotoxicity to the RAW 264.7 monocyte/macrophage-like cell line in vitro. With bacterial uptake of 57.29 %, SLN1 turned out to be significantly more effective than MOX given as standard solution, whereas SLN2, NLC1, and NLC2 formulations with respective bacterial uptakes of 50.74 %, 39.26 %, and 32.79 %, showed similar activity to standard MOX. Cytotoxicity testing did not reveal significant toxicity of nanoparticles, whether MOX-free or MOX-loaded, against RAW 264.7 cells. Our findings may show the way for a development of effective lipid carriers that reduce side effects and increase antibacterial treatment efficacy in view of the growing antibiotic resistance.


Assuntos
Antineoplásicos , Nanopartículas , Moxifloxacina/farmacologia , Escherichia coli , Portadores de Fármacos , Nanopartículas/toxicidade , Antibacterianos/toxicidade , Lipídeos
3.
Acta Biol Hung ; 68(4): 466-476, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29262709

RESUMO

In recent years rapidly growing antibiotic resistance has increased interest toward natural products, especially essential oils because of their various effects. The aim of this study was to identify the chemical composition of the commercial Origanum onites essential oil (EO) and to investigate the antimicrobial activity by disc diffusion and dilution methods, against ten different ATCC strains, including eight bacteria, two yeasts and seventy-nine clinical nosocomial Escherichia coli isolates that produce extended spectrum beta lactamase (ESBL). The chemical composition of EO was analyzed by GC and GC-MS. The major compounds of the EO were determined as carvacrol (51.4%) followed by linalool (11.2%), p-cymene (8.9%) and γ-terpinene (6.7%). O. onites EO had antimicrobial activity against all standard strains and inhibited microbial growth of ESBL positive E. coli isolates. According to our results, O. onites EO may be an alternative to synthetic drug, used in combination with other antibiotics for treatment of infection caused by multidrug resistant bacteria after testing toxic effects and irritation at preferred doses on human.


Assuntos
Anti-Infecciosos/farmacologia , Carbapenêmicos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Origanum/química , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/metabolismo , Anti-Infecciosos/química , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA