Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 24(4): 595-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782623

RESUMO

Glioblastomas are aggressive primary brain cancers that recur as therapy-resistant tumors. Myeloid cells control glioblastoma malignancy, but their dynamics during disease progression remain poorly understood. Here, we employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence. This revealed a large and diverse myeloid compartment, with dendritic cell and macrophage populations that were conserved across species and dynamic across disease stages. Tumor-associated macrophages (TAMs) consisted of microglia- or monocyte-derived populations, with both exhibiting additional heterogeneity, including subsets with conserved lipid and hypoxic signatures. Microglia- and monocyte-derived TAMs were self-renewing populations that competed for space and could be depleted via CSF1R blockade. Microglia-derived TAMs were predominant in newly diagnosed tumors, but were outnumbered by monocyte-derived TAMs following recurrence, especially in hypoxic tumor environments. Our results unravel the glioblastoma myeloid landscape and provide a framework for future therapeutic interventions.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Macrófagos Associados a Tumor/citologia , Macrófagos Associados a Tumor/imunologia , Animais , Humanos , Camundongos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA