Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38726936

RESUMO

Proflavine, a fluorescent cationic dye with strong absorption in the visible, has been proposed as a potential contributor to diffuse interstellar bands (DIBs). To investigate this hypothesis, it is essential to examine the spectra of cold and isolated ions for comparison. Here, we report absorption spectra of proflavine ions, trapped in a liquid-nitrogen-cooled ion trap filled with helium-buffer gas, as well as fluorescence spectra to provide further information on the intrinsic photophysics. We find absorption- and fluorescence-band maxima at 434.2 ± 0.1 and 434.7 ± 0.3 nm, corresponding to a Stokes shift of maximum 48 cm-1, which indicates minor differences between ground-state and excited-state geometries. Based on time-dependent density functional theory, we assign the emitting state to S2 as its geometry closely resembles that of S0, whereas the S1 geometry differs from that of S0. As a result, simulated spectra involving S1 exhibit long Franck-Condon progressions, absent in the experimental spectra. The latter displays well-resolved vibrational features, assigned to transitions involving in-plane vibrational modes where the vibrational quantum number changes by one. Dominant transitions are associated with vibrations localized on the NH2 moieties. Experiments repeated at room temperature yield broader spectra with maxima at 435.5 ± 1 nm (absorption) and 438.0 ± 1 nm (fluorescence). We again conclude that prevalent fluorescence arises from S2, i.e., anti-Kasha behavior, in agreement with previous work. Excited-state lifetimes are 5 ± 1 ns, independent of temperature. Importantly, we exclude the possibility that a narrow DIB at 436.4 nm originates from cold proflavine cations as the band is redshifted compared to our absorption spectra.

2.
Environ Sci Technol ; 57(50): 21168-21177, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051922

RESUMO

Despite its impact on the climate, the mechanism of methanesulfonic acid (MSA) formation in the oxidation of dimethyl sulfide (DMS) remains unclear. The DMS + OH reaction is known to form methanesulfinic acid (MSIA), methane sulfenic acid (MSEA), the methylthio radical (CH3S), and hydroperoxymethyl thioformate (HPMTF). Among them, HPMTF reacts further to form SO2 and OCS, while the other three form the CH3SO2 radical. Based on theoretical calculations, we find that the CH3SO2 radical can add O2 to form CH3S(O)2OO, which can react further to form MSA. The branching ratio is highly temperature sensitive, and the MSA yield increases with decreasing temperature. In warmer regions, SO2 is the dominant product of DMS oxidation, while in colder regions, large amounts of MSA can form. Global modeling indicates that the proposed temperature-sensitive MSA formation mechanism leads to a substantial increase in the simulated global atmospheric MSA formation and burden.


Assuntos
Sulfetos , Oxirredução , Temperatura
3.
J Phys Chem A ; 127(31): 6476-6485, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37527456

RESUMO

We have detected the tert-butyl hydroperoxide dimer, (t-BuOOH)2, in the gas phase at room temperature using conventional FTIR techniques. The dimer is identified by an asymmetric absorbance band assigned to the fundamental hydrogen-bound OHb-stretch. The weighted band maximum of the dimer OHb-stretch is located at ∼3452 cm-1, red-shifted by ∼145 cm-1 from the monomer OH-stretching band. The gas-phase dimer assignment is supported by Ar matrix isolation FTIR experiments at 12 K and experiments with a partially deuterated sample. Computationally, we find the lowest energy structure of (t-BuOOH)2 to be a doubly hydrogen bound six-membered ring with non-optimal hydrogen bond angles. We estimate the gas-phase constant of dimer formation, K, to be 0.4 (standard pressure of 1 bar) using the experimental integrated absorbance and a theoretically determined oscillator strength of the OHb-stretching band.

4.
J Phys Chem Lett ; 12(46): 11346-11352, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34780698

RESUMO

While action spectroscopy of cold molecular ions is a well-established technique to provide vibrationally resolved absorption features, fluorescence experiments are still challenging. Here we report the fluorescence spectra of pyronin-Y and resorufin ions at 100 K using a newly constructed setup. Spectra narrow upon cooling, and the emission maxima blueshift. Temperature effects are attributed to the population of vibrational excited levels in S1, and that frequencies are lower in S1 than in S0. This picture is supported by calculated spectra based on a Franck-Condon model that not only predicts the observed change in maximum, but also assigns Franck-Condon active vibrations. In-plane vibrational modes that preserve the mirror plane present in both S0 and S1 of resorufin and pyronin Y account for most of the observed vibrational bands. Finally, at low temperatures, it is important to pick an excitation wavelength as far to the red as possible to not reheat the ions.

5.
Rev Sci Instrum ; 92(3): 033105, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820085

RESUMO

Here, we present a new instrument named LUNA2 (LUminescence iNstrument in Aarhus 2), which is purpose-built to measure dispersed fluorescence spectra of gaseous ions produced by electrospray ionization and cooled to low temperatures (<100 K). LUNA2 is, as an earlier room-temperature setup (LUNA), optimized for a high collection efficiency of photons and includes improvements based on our operational experience with LUNA. The fluorescence cell is a cylindrical Paul trap made of copper with a hole in the ring electrode to permit laser light to interact with the trapped ions, and one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The entrance and exit electrodes are both in physical contact with the liquid-nitrogen cooling unit to reduce cooling times. Mass selection is done in a two-step scheme where, first, high-mass ions are ejected followed by low-mass ions according to the Mathieu stability region. This scheme may provide a higher mass resolution than when only one DC voltage is used. Ions are irradiated by visible light delivered from a nanosecond 20-Hz pulsed laser, and dispersed fluorescence is measured with a spectrometer combined with an iCCD camera that allows intensification of the signal for a short time interval. LUNA2 contains an additional Paul trap that can be used for mass selection before ions enter the fluorescence cell, which potentially is relevant to diminishing RF heating in the cold trap. Successful operation of the setup is demonstrated from experiments with rhodamine dyes and oxazine-4, and spectral changes with temperature are identified.

6.
Environ Sci Technol ; 54(21): 13467-13477, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33084314

RESUMO

Emissions of aromatic compounds cause air pollution and detrimental health effects. Here, we explore the reaction kinetics and products of key radicals in benzene photo-oxidation. After initial OH addition and reaction with O2, the effective production rates of phenol and bicyclic peroxy radical (BCP-peroxy) are experimentally constrained at 295 K to be 420 ± 80 and 370 ± 70 s-1, respectively. These rates lead to approximately 53% yield for phenol and 47% yield for BCP-peroxy under atmospheric conditions. The reaction of BCP-peroxy with NO produces bicyclic hydroxy nitrate with a branching ratio <0.2%, indicating efficient NOx recycling. Similarly, the reaction of BCP-peroxy with HO2 largely recycles HOx, producing the corresponding bicyclic alkoxy radical (BCP-oxy). Because of the presence of C-C double bonds and multiple functional groups, the chemistry of BCP-oxy and other alkoxy radicals in the system is diverse. Experimental results suggest the aldehydic H-shift and ring-closure to produce an epoxide functionality could be competitive with classic decomposition of alkoxy radicals. These reactions are potential sources of highly oxygenated molecules. Finally, despite the large number of compounds observed in our study, we are unable to account for ∼20% of the carbon flow.


Assuntos
Benzeno , Compostos Orgânicos , Cinética , Oxirredução
7.
J Phys Chem A ; 124(35): 7113-7122, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32804504

RESUMO

We have detected the H2O·DMA and H2O·TMA (DMA, dimethylamine; TMA, trimethylamine) bimolecular complexes at room temperature in the gas phase using Fourier transform infrared spectroscopy. For both complexes, five vibrational bands associated with the H2O molecule are observed and assigned. Within a reduced dimensional local mode framework, we set up a six-dimensional model, including the three H2O vibrational modes and three of the six intermolecular modes, all described with internal curvilinear coordinates. The single points on the potential energy surface and Eckart corrected dipole moment surface are calculated with the CCSD(T)-F12a/cc-pVDZ-F12 method. Combining the measured and calculated transition intensities, we determine the Gibbs energy of complex formation of both complexes from each of the observed bands. The multiple determinations give similar Gibbs energies, for each complex, and increase the confidence in the combined experimental and theoretical approach, and improve the accuracy of the determined Gibbs energies. The average Gibbs energies of complex formation are found to be 5.0 ± 0.2 and 3.8 ± 0.2 kJ/mol for H2O·DMA and H2O·TMA, respectively. In addition to the experimental uncertainty, there is a potential error on the calculated intensities corresponding to 0.4 kJ/mol. However, the small spread among the four determinations suggests that this error is even less. The Gibbs energies of these complexes serve as accurate benchmarks for theoretical approaches that are prevalent in hydrogen bonding and nucleation studies.

8.
J Phys Chem A ; 124(5): 932-942, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31913643

RESUMO

Absolute OH- and OD-stretching transition intensities have been calculated for a series of alcohols (methanol, ethanol, 2-propanol, 1-propanol, and tert-butanol) with one-dimensional (1D) and three-dimensional (3D) local mode models. We compare the calculated intensities for the ΔvOH = 1-5 and ΔvOD = 1-3 transitions with experimental values. Potential energy and dipole moment surfaces are calculated at the CCSD(T)-F12a/VDZ-F12 level of theory. The 1D local mode model includes only the OH(D)-stretching mode, whereas the 3D local mode model also includes the CO-stretching and COH(D)-bending modes. We analyze the effect on vibrational intensities of using either a molecule-fixed Eckart frame or a space-fixed Cartesian frame. We find that both Eckart embedding and inclusion of the CO-stretching and COH(D)-bending modes in the local mode model are important for the OH/OD-stretching fundamental transition intensities, but have a minor effect on overtone intensities. The 3D reduced-dimensional local model, when combined with coupled cluster surfaces, accurately predicts OH/OD-stretching transition intensities and wavenumbers, for all alcohols included in this work.

9.
Chem Rev ; 119(6): 3472-3509, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30799608

RESUMO

Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research.


Assuntos
Oxigênio/química , Peróxidos/química , Compostos Orgânicos Voláteis/química , Aerossóis , Atmosfera/química , Oxirredução
10.
J Phys Chem A ; 122(15): 3899-3908, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29579393

RESUMO

Gas-phase Fourier transform infrared spectroscopy and quantum chemical calculations are combined to illustrate the effect of hybridization on the hydrogen-bond acceptor strength of nitrogen by a comparison of nine bimolecular complexes. We present gas-phase results for the complexes of methanol, ethanol, and 2,2,2-trifluoroethanol with acetonitrile (sp-hybridized N) and find that the structure of these complexes is nearly linear and dominated by the OH···N hydrogen bond with no experimental indication of an OH-π bonded structure. We compare experimental redshifts and equilibrium constants, obtained by combining experiments and theory, for these complexes to the corresponding complexes with pyridine (sp2-hybridized N) and trimethylamine (sp3-hybridized N). The comparison clearly illustrates that increasing the s-character of the nitrogen lone pair decreases the hydrogen-bond acceptor strength (sp3 > sp2 > sp). The observed trend correlates with the basicity of the acceptors and can be explained by the partial charge on the accepting nitrogen atom and the degree of localization of the nitrogen lone pair.

11.
J Phys Chem A ; 121(18): 3452-3460, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28436672

RESUMO

This work considers the nature of the intermolecular hydrogen bond in a series of 15 different complexes with OH donor groups and N, O, P, or S acceptor atoms. To complement the existing literature, room-temperature gas-phase vibrational spectra of the methanol-pyridine, ethanol-pyridine, and 2,2,2-trifluoroethanol-pyridine complexes were recorded. These complexes were chosen, as they exhibit hydrogen bonds of intermediate strength as compared to previous investigations that involved strong or weak hydrogen bonds. Non Covalent Interactions (NCI) theory was used to calculate various properties of the intermolecular hydrogen bonds, which were compared to the experimental OH-stretching vibrational red shifts. We find that the experimental OH-stretching red shifts correlate strongly with the kinetic energy density integrated within the reduced density gradient volume that describes a hydrogen bond [G(s0.5)]. Given that vibrational red shifts are commonly used as a metric of the strength of a hydrogen bond, this suggests that G(s0.5) could be used as a predictor of hydrogen bonding strength.

12.
Phys Chem Chem Phys ; 18(34): 23831-9, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27523902

RESUMO

We have measured the infrared spectra of ethanol·dimethylamine and methanol·dimethylamine complexes in the 299-374 K temperature range, and have determined the enthalpy of complex formation (ΔH) to be -31.1 ± 2 and -29.5 ± 2 kJ mol(-1), respectively. The corresponding values of the Gibbs free energy (ΔG) are determined from the experimental integrated absorbance and a calculated oscillator strength of the OH-stretching vibrational transition to be 4.1 ± 0.3 and 3.9 ± 0.3 kJ mol(-1) at 302 and 300 K, respectively. The entropy, ΔS is determined from the values of ΔH and ΔG to be -117 ± 7 and -111 ± 10 J (mol K)(-1) for the ethanol·dimethylamine and methanol·dimethylamine complexes, respectively. The determined ΔH, ΔG and ΔS values of the two complexes are similar, as expected by the similarity to their donor molecules ethanol and methanol. Values of ΔH, ΔG and ΔS in chemical reactions are often obtained from quantum chemical calculations. However, these calculated values have limited accuracy and large variations are found using different methods. The accuracy of the present ΔH, ΔG and ΔS values is such that the benchmarking of theoretical methods is possible.

13.
J Phys Chem A ; 119(44): 10988-98, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26451467

RESUMO

We have observed the NH···P hydrogen bond in a gas phase complex. The bond is identified in the dimethylamine-trimethylphosphine complex by a red shift of the fundamental NH-stretching frequency observed using Fourier transform infrared spectroscopy (FT-IR). On the basis of the measured NH-stretching frequency red shifts, we find that P is a hydrogen bond acceptor atom similar in strength to S. Both are stronger acceptors than O and significantly weaker acceptors than N. The hydrogen bond angle, ∠NHP, is found to be very sensitive to the functional employed in density functional theory (DFT) optimizations of the complex and is a possible parameter to assess the quality of DFT functionals. Natural bonding orbital (NBO) energies and results from the topological methods atoms in molecules (AIM) and noncovalent interactions (NCI) indicate that the sensitivity is caused by the weakness of the hydrogen bond compared to secondary interactions. We find that B3LYP favors the hydrogen bond and M06-2X favors the secondary interactions leading to under- and overestimation, respectively, of the hydrogen bond angle relative to a DF-LCCSD(T)-F12a calculated angle. The remaining functionals tested, B3LYP-D3, B3LYP-D3BJ, CAM-B3LYP, and ωB97X-D, as well as MP2, show comparable contributions from the hydrogen bond and the secondary interactions and are close to DF-LCCSD(T)-F12a results.

14.
J Phys Chem A ; 118(8): 1384-9, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24533924

RESUMO

Models of atmospheric aerosol formation are dependent on accurate Gibbs free binding energies (ΔG°) of gaseous acids and bases, but for most acid­base pairs, only ab initio data are available. We report a combined experimental and theoretical study of the gaseous molecular complex of dimethylsulfide (DMS) and HCl. On the basis of infrared spectroscopy and anharmonic local mode calculations, we determine ΔG(295K)° to be between 6.2 and 11.1 kJ mol(­1). We test the performance of MP2 and five often used DFT functionals with respect to this result. M06-2X performs the best, but also the MP2 prediction is within the experimental range. We find that coupled cluster corrections to the electronic energy improves ΔG° estimates if and only if triple excitations are included. These estimates may be further improved by applying vibrational scaling factors to account for anharmonicity. Hereby, all but the PW91 based predictions are within the experimental range.

15.
J Phys Chem A ; 117(40): 10260-73, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24001040

RESUMO

Gas-phase vibrational spectra of 2-aminoethanol and 3-aminopropanol were recorded up to the third OH-stretching overtone using Fourier transform infrared spectroscopy, cavity ringdown spectroscopy, and intracavity laser photoacoustic spectroscopy. The experimental investigation was supplemented by local mode calculations, and the intramolecular interactions were investigated using atoms in molecules (AIM) and noncovalent interactions (NCI) theories. All calculations were performed at the CCSD(T)-F12a/VDZ-F12 level of theory. For both compounds the most abundant conformer has a structure that allows for hydrogen bond interaction from the OH group to the N atom of the amino group (OH-N). The spectra show signals from both hydrogen bonded and free OH stretches, implying the presence of several conformers. We observe hydrogen-bond-like interactions in both compounds. The red shift of the bonded OH-stretching frequency and intensity enhancement of the fundamental transition suggest that the hydrogen bond interaction is more pronounced in 3-aminopropanol. AIM analysis supports the presence of a hydrogen bond in 3-aminopropanol but not in 2-aminoethanol, whereas NCI analysis shows hydrogen bonding in both compounds with the stronger interaction found in 3-aminopropanol.

16.
Phys Chem Chem Phys ; 15(14): 5140-50, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-23450164

RESUMO

The gas phase reaction between methane sulfonic acid (CH3SO3H; MSA) and the hydroxyl radical (HO), without and with a water molecule, was investigated with DFT-B3LYP and CCSD(T)-F12 methods. For the bare reaction we have found two reaction mechanisms, involving proton coupled electron transfer and hydrogen atom transfer processes that produce CH3SO3 and H2O. We also found a third reaction mechanism involving the double proton transfer process, where the products and reactants are identical. The computed rate constant for the oxidation process is 8.3 × 10(-15) cm(3) s(-1) molecule(-1). CH3SO3H forms two very stable complexes with water with computed binding energies of about 10 kcal mol(-1). The presence of a single water molecule makes the reaction between CH3SO3H and HO much more complex, introducing a new reaction that consists in the interchange of H2O between HO and CH3SO3H. Our kinetic calculations show that 99.5% of the reaction involves this interchange of the water molecule and, consequently, water vapor does not play any role in the oxidation reaction of methane sulfonic acid by the hydroxyl radical.


Assuntos
Radical Hidroxila/química , Mesilatos/química , Gases/química , Teoria Quântica , Volatilização , Água/química
17.
J Chem Theory Comput ; 9(8): 3263-6, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26584086

RESUMO

Atoms in Molecules (AIM) theory is routinely used to assess hydrogen bond formation; however its stringent criteria controversially exclude some systems that otherwise appear to exhibit weak hydrogen bonds. We show that a regional analysis of the reduced density gradient, as provided by the recently introduced Non-Covalent Interactions (NCI) index, transcends AIM theory to deliver a chemically intuitive description of hydrogen bonding for a series of 1,n-alkanediols. This regional definition of interactions overcomes the known caveat of only analyzing electron density critical points. In other words, the NCI approach is a simple and elegant generalization of the bond critical point approach, which raises the title question. Namely, is it the presence of an electron density bond critical point that defines a hydrogen bond or the general topology in the region surrounding it?

18.
Phys Chem Chem Phys ; 14(37): 12992-9, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22903308

RESUMO

The gas phase hydrogen abstraction reaction between OH and CY(2)XH, where X = H, F, OH, or NH(2) and Y = H, CH(3) or F, in the absence and presence of a single water molecule is investigated using both density function theory, B3LYP, and explicitly correlated coupled cluster theory, CCSD(T)-F12. We find that a single water molecule could have a catalytic effect at low temperatures possible in laboratory experiments, but does not seem to catalyze these reactions at 298 K, and will not play a role under relevant atmospheric conditions.

19.
J Chem Phys ; 136(18): 184305, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583285

RESUMO

We have identified the dimethylamine-trimethylamine complex (DMA-TMA) at room temperature in the gas phase. The Fourier transform infrared (FTIR) spectrum of DMA-TMA in the NH-stretching fundamental region was obtained by spectral subtraction of spectra of each monomer. Explicitly correlated coupled cluster calculations were used to determine the minimum energy structure and interaction energy of DMA-TMA. Frequencies and intensities of NH-stretching transitions were also calculated at this level of theory with an anharmonic oscillator local mode model. The fundamental NH-stretching intensity in DMA-TMA is calculated to be approximately 700 times larger than that of the DMA monomer. The measured and calculated intensity is used to determine a room temperature equilibrium constant of DMA-TMA of 1.7 × 10(-3) atm(-1) at 298 K.

20.
J Phys Chem A ; 115(44): 12097-104, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21950960

RESUMO

Dimethylamine (DMA) has been studied by gas-phase Fourier transform infrared (FTIR) spectroscopy. We have identified a spectral transition that is assigned to the DMA dimer. The IR spectra of the dimer in the gas phase are obtained by spectral subtraction of spectra recorded at different pressures. The enthalpy of hydrogen bond formation was obtained for the DMA dimer by temperature-dependence measurements. We complement the experimental results with ab initio and anharmonic local mode model calculations of monomer and dimer. Compared to the monomer, our calculations show that in the dimer the N-H bond is elongated, and the NH-stretching fundamental shifts to a lower wavenumber. More importantly, the weak NH-stretching fundamental transition has a pronounced intensity increase upon complexation. However, the first NH-stretching overtone transition is not favored by the same intensity enhancement, and we do not observe the first NH-stretching overtone of the dimer. On the basis of the measured and calculated intensity of the NH-stretching transition of the dimer, the equilibrium constant for dimerization at room temperature was determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA