Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5693, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029160

RESUMO

Malignant ventricular arrhythmias (VA) after acute myocardial infarction remain a major threat. Aim of this study was to characterize the electrophysiological and autonomic sequelae of cardiac ischemia and reperfusion (I/R) in mice during the first week post incident. Left ventricular function was serially assessed using transthoracic echocardiography. VA were quantified by telemetric electrocardiogram (ECG) recordings and electrophysiological studies on the 2nd and 7th day after I/R. Cardiac autonomic function was evaluated by heart rate variability (HRV) and heart rate turbulence (HRT). Infarct size was quantified by planimetric measures. I/R caused significant myocardial scarring and diminished left ventricular ejection fraction. The ECG intervals QRS, QT, QTc, and JTc were prolonged in I/R mice. Both spontaneous VA scored higher and the inducibility of VA was raised in I/R mice. An analysis of HRV and HRT indicated a relative reduction in parasympathetic activity and disturbed baroreflex sensitivity up to 7 days after I/R. In summary, during the first week after I/R, the murine heart reflects essential features of the human heart after myocardial infarction, including a greater vulnerability for VA and a decreased parasympathetic tone accompanied by decelerated depolarization and repolarization parameters.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Isquemia Miocárdica , Humanos , Animais , Camundongos , Volume Sistólico , Função Ventricular Esquerda , Isquemia Miocárdica/complicações , Eletrocardiografia , Doença da Artéria Coronariana/complicações , Arritmias Cardíacas/complicações , Reperfusão Miocárdica , Frequência Cardíaca/fisiologia
2.
Pflugers Arch ; 472(12): 1733-1742, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095298

RESUMO

The hyperpolarization-activated cation current If is a key determinant for cardiac pacemaker activity. It is conducted by subunits of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family, of which HCN4 is predominant in mammalian heart. Both loss-of-function and gain-of-function mutations of the HCN4 gene are associated with sinus node dysfunction in humans; however, their functional impact is not fully understood yet. Here, we sought to characterize a HCN4 V759I variant detected in a patient with a family history of sick sinus syndrome. The genomic analysis yielded a mono-allelic HCN4 V759I variant in a 49-year-old woman presenting with a family history of sick sinus syndrome. This HCN4 variant was previously classified as putatively pathogenic because genetically linked to sudden infant death syndrome and malignant epilepsy. However, detailed electrophysiological and cell biological characterization of HCN4 V759I in Xenopus laevis oocytes and embryonic rat cardiomyocytes, respectively, did not reveal any obvious abnormality. Voltage dependence and kinetics of mutant channel activation, modulation of cAMP-gating by the neuronal HCN channel auxiliary subunit PEX5R, and cell surface expression were indistinguishable from wild-type HCN4. In good agreement, the clinically likewise affected mother of the patient does not exhibit the reported HCN4 variance. HCN4 V759I resembles an innocuous genetic HCN channel variant, which is not sufficient to disturb cardiac pacemaking. Once more, our work emphasizes the importance of careful functional interpretation of genetic findings not only in the context of hereditary cardiac arrhythmias.


Assuntos
Bradicardia/genética , Frequência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Canais de Potássio/genética , Potenciais de Ação , Animais , Bradicardia/diagnóstico , Bradicardia/fisiopatologia , Células Cultivadas , Feminino , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Potássio/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Xenopus
3.
EBioMedicine ; 48: 539-553, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31648987

RESUMO

BACKGROUND: Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome caused by various types of liver failure resulting in hyperammonemia-induced dysfunction of astrocytes. It is unclear whether autophagy, an important pro-survival pathway, is altered in the brains of ammonia-intoxicated animals as well as in HE patients. METHODS: Using primary rat astrocytes, a co-culture model of primary mouse astrocytes and neurons, an in vivo rat HE model, and post mortem brain samples of liver cirrhosis patients with HE we analyzed whether and how hyperammonemia modulates autophagy. FINDINGS: We show that autophagic flux is efficiently inhibited after administration of ammonia in astrocytes. This occurs in a fast, reversible, time-, dose-, and ROS-dependent manner and is mediated by ammonia-induced changes in intralysosomal pH. Autophagic flux is also strongly inhibited in the cerebral cortex of rats after acute ammonium intoxication corroborating our results using an in vivo rat HE model. Transglutaminase 2 (TGM2), a factor promoting autophagy, is upregulated in astrocytes of in vitro- and in vivo-HE models as well as in post mortem brain samples of liver cirrhosis patients with HE, but not in patients without HE. LC3, a commonly used autophagy marker, is significantly increased in the brain of HE patients. Ammonia also modulated autophagy moderately in neuronal cells. We show that taurine, known to ameliorate several parameters caused by hyperammonemia in patients suffering from liver failure, is highly potent in reducing ammonia-induced impairment of autophagic flux. This protective effect of taurine is apparently not linked to inhibition of mTOR signaling but rather to reducing ammonia-induced ROS formation. INTERPRETATION: Our data support a model in which autophagy aims to counteract ammonia-induced toxicity, yet, as acidification of lysosomes is impaired, possible protective effects thereof, are hampered. We propose that modulating autophagy in astrocytes and/or neurons, e.g. by taurine, represents a novel strategy to treat liver diseases associated with HE. FUNDING: Supported by the DFG, CRC974 "Communication and Systems Relevance in Liver Injury and Regeneration", Düsseldorf (Project number 190586431) Projects A05 (DH), B04 (BG), B05 (NK), and B09 (ASR).


Assuntos
Astrócitos/metabolismo , Autofagia , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/metabolismo , Animais , Astrócitos/ultraestrutura , Autopsia , Biópsia , Linhagem Celular , Células Cultivadas , Encefalopatia Hepática/complicações , Encefalopatia Hepática/patologia , Humanos , Concentração de Íons de Hidrogênio , Hiperamonemia/etiologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Nat Commun ; 8: 14155, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128201

RESUMO

The parasympathetic nervous system plays an important role in the pathophysiology of atrial fibrillation. Catheter ablation, a minimally invasive procedure deactivating abnormal firing cardiac tissue, is increasingly becoming the therapy of choice for atrial fibrillation. This is inevitably associated with the obliteration of cardiac cholinergic neurons. However, the impact on ventricular electrophysiology is unclear. Here we show that cardiac cholinergic neurons modulate ventricular electrophysiology. Mechanical disruption or pharmacological blockade of parasympathetic innervation shortens ventricular refractory periods, increases the incidence of ventricular arrhythmia and decreases ventricular cAMP levels in murine hearts. Immunohistochemistry confirmed ventricular cholinergic innervation, revealing parasympathetic fibres running from the atria to the ventricles parallel to sympathetic fibres. In humans, catheter ablation of atrial fibrillation, which is accompanied by accidental parasympathetic and concomitant sympathetic denervation, raises the burden of premature ventricular complexes. In summary, our results demonstrate an influence of cardiac cholinergic neurons on the regulation of ventricular function and arrhythmogenesis.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Neurônios Colinérgicos/fisiologia , Ventrículos do Coração/inervação , Sistema Nervoso Parassimpático/fisiopatologia , Idoso , Animais , Fibrilação Atrial/fisiopatologia , Neurônios Colinérgicos/efeitos dos fármacos , AMP Cíclico/metabolismo , Suscetibilidade a Doenças/fisiopatologia , Ecocardiografia , Eletrocardiografia , Feminino , Átrios do Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurotransmissores/farmacologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/lesões , Estudos Retrospectivos , Função Ventricular/efeitos dos fármacos , Função Ventricular/fisiologia
5.
Sci Rep ; 7: 40190, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067279

RESUMO

Genetic defects in ammonia metabolism can produce irreversible damage of the developing CNS causing an impairment of cognitive and motor functions. We investigated alterations in behavior, synaptic plasticity and gene expression in the hippocampus and dorsal striatum of transgenic mice with systemic hyperammonemia resulting from conditional knockout of hepatic glutamine synthetase (LGS-ko). These mice showed reduced exploratory activity and delayed habituation to a novel environment. Field potential recordings from LGS-ko brain slices revealed significantly reduced magnitude of electrically-induced long-term potentiation (LTP) in both CA3-CA1 hippocampal and corticostriatal synaptic transmission. Corticostriatal but not hippocampal slices from LGS-ko brains demonstrated also significant alterations in long-lasting effects evoked by pharmacological activation of glutamate receptors. Real-time RT-PCR revealed distinct patterns of dysregulated gene expression in the hippocampus and striatum of LGS-ko mice: LGS-ko hippocampus showed significantly modified expression of mRNAs for mGluR1, GluN2B subunit of NMDAR, and A1 adenosine receptors while altered expression of mRNAs for D1 dopamine receptors, the M1 cholinoreceptor and the acetylcholine-synthetizing enzyme choline-acetyltransferase was observed in LGS-ko striatum. Thus, inborn systemic hyperammonemia resulted in significant deficits in novelty acquisition and disturbed synaptic plasticity in corticostriatal and hippocampal pathways involved in learning and goal-directed behavior.


Assuntos
Encéfalo/fisiopatologia , Comportamento Exploratório , Glutamato-Amônia Ligase/deficiência , Hiperamonemia/genética , Hiperamonemia/psicologia , Plasticidade Neuronal , Animais , Encéfalo/metabolismo , Córtex Cerebral/fisiopatologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Glutamato-Amônia Ligase/genética , Habituação Psicofisiológica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hiperamonemia/congênito , Fígado/metabolismo , Masculino , Camundongos Knockout , Receptores de Dopamina D2/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica
6.
Nat Med ; 21(4): 363-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774850

RESUMO

In the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells. Further, NMDAR inhibition prolonged the amount of time that glucose-stimulated beta cells spent in a depolarized state with high cytosolic Ca(2+) concentrations. We also noticed that, in vivo, the NMDAR antagonist dextromethorphan (DXM) enhanced glucose tolerance in mice, and that in vitro dextrorphan, the main metabolite of DXM, amplified the stimulatory effect of exendin-4 on GSIS. In a mouse model of type 2 diabetes mellitus (T2DM), long-term treatment with DXM improved islet insulin content, islet cell mass and blood glucose control. Further, in a small clinical trial we found that individuals with T2DM treated with DXM showed enhanced serum insulin concentrations and glucose tolerance. Our data highlight the possibility that antagonists of NMDARs may provide a useful adjunct treatment for diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Pâncreas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Animais , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Dextrometorfano/química , Modelos Animais de Doenças , Desenho de Fármacos , Exenatida , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Peptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Peçonhas/metabolismo
7.
Neuron ; 62(6): 814-25, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19555650

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are key modulators of neuronal activity by providing the depolarizing cation current I(h) involved in rhythmogenesis, dendritic integration, and synaptic transmission. These tasks critically depend on the availability of HCN channels, which is dynamically regulated by intracellular cAMP; the range of this regulation, however, largely differs among neurons in the mammalian brain. Using affinity purification and high-resolution mass spectrometry, we identify the PEX5R/Trip8b protein as the beta subunit of HCN channels in the mammalian brain. Coassembly of PEX5R/Trip8b affects HCN channel gating in a subtype-dependent and mode-specific way: activation of HCN2 and HCN4 by cAMP is largely impaired, while gating by phosphoinositides and basal voltage-dependence remain unaffected. De novo expression of PEX5R/Trip8b in cardiomyocytes abolishes beta-adrenergic stimulation of HCN channels. These results demonstrate that PEX5R/Trip8b is an intrinsic auxiliary subunit of brain HCN channels and establish HCN-PEX5R/Trip8b coassembly as a mechanism to control the channels' responsiveness to cyclic nucleotide signaling.


Assuntos
AMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Canais de Potássio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1 , Animais , Encéfalo/ultraestrutura , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/genética , Isoproterenol/farmacologia , Espectrometria de Massas/métodos , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Microinjeções/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oócitos , Técnicas de Patch-Clamp/métodos , Peroxinas , Canais de Potássio/genética , Multimerização Proteica/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Transdução Genética/métodos , Xenopus
8.
Gastroenterology ; 134(4): 1058-69, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18395087

RESUMO

BACKGROUND & AIMS: K(+) recycling at the apical membrane of gastric parietal cells is a prerequisite for gastric acid secretion. Two K(+) channels are currently being considered for this function, namely KCNQ1 and inwardly rectifying K(+) channels (Kir). This study addresses the subcellular localization, trafficking, and potential functional significance of KCNQ1 and Kir4.1 channels during stimulated acid secretion. METHODS: The effect of pharmacologic KCNQ1 blockade on acid secretion was studied in cultured rat and rabbit parietal cells and in isolated mouse gastric mucosa. The subcellular localization of KCNQ1 and Kir4.1 was determined in highly purified membrane fractions by Western blot analysis as well as in fixed and living cells by confocal microscopy. RESULTS: In cultured parietal cells and in isolated gastric mucosa, a robust acid secretory response was seen after complete pharmacologic blockade of KCNQ1. Both biochemical and morphologic data demonstrate that Kir4.1 and KCNQ1 colocalize with the H(+)/K(+)-ATPase but do so in different tubulovesicular pools. All Kir4.1 translocates to the apical membrane after stimulation in contrast to only a fraction of KCNQ1, which mostly remains cytoplasmic. CONCLUSIONS: Acid secretion can be stimulated after complete pharmacologic blockade of KCNQ1 activity, suggesting that additional apical K(+) channels regulate gastric acid secretion. The close association of Kir4.1 channels with H(+)/K(+)-ATPase in the resting and stimulated membrane suggests a possible role for Kir4.1 channels during the acid secretory cycle.


Assuntos
Ácido Gástrico/metabolismo , Canal de Potássio KCNQ1/metabolismo , Células Parietais Gástricas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Western Blotting , Células Cultivadas , Cromanos/farmacologia , Modelos Animais de Doenças , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Canal de Potássio KCNQ1/antagonistas & inibidores , Masculino , Camundongos , Microscopia Confocal , Células Parietais Gástricas/citologia , Células Parietais Gástricas/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Coelhos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Sulfonamidas/farmacologia
9.
Neuron ; 52(6): 1027-36, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178405

RESUMO

Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels mediate the depolarizing cation current (termed I(h) or I(f)) that initiates spontaneous rhythmic activity in heart and brain. This function critically depends on the reliable opening of HCN channels in the subthreshold voltage-range. Here we show that activation of HCN channels at physiologically relevant voltages requires interaction with phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) acts as a ligand that allosterically opens HCN channels by shifting voltage-dependent channel activation approximately 20 mV toward depolarized potentials. Allosteric gating by PIP(2) occurs in all HCN subtypes and is independent of the action of cyclic nucleotides. In CNS neurons and cardiomyocytes, enzymatic degradation of phospholipids results in reduced channel activation and slowing of the spontaneous firing rate. These results demonstrate that gating by phospholipids is essential for the pacemaking activity of HCN channels in cardiac and neuronal rhythmogenesis.


Assuntos
Relógios Biológicos/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Neurônios/fisiologia , Fosfatidilinositóis/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Androstadienos/farmacologia , Animais , Relógios Biológicos/efeitos dos fármacos , Encéfalo/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Embrião não Mamífero , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/efeitos da radiação , Neurônios/efeitos dos fármacos , Oócitos , Técnicas de Patch-Clamp/métodos , Fosfatidilinositol 4,5-Difosfato/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Canais de Potássio , Pirimidinas/farmacologia , Wortmanina , Xenopus
10.
Neuron ; 49(5): 697-706, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16504945

RESUMO

The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.


Assuntos
Encéfalo/metabolismo , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/fisiologia , Inibição Neural/fisiologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting/métodos , Encéfalo/citologia , Química Encefálica , Membrana Celular/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Humanos , Imuno-Histoquímica/métodos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas/métodos , Potenciais da Membrana/fisiologia , Mutagênese/fisiologia , Mutação , Oócitos , Técnicas de Patch-Clamp/métodos , Conformação Proteica , Ratos , Alinhamento de Sequência , Coloração pela Prata/métodos , Transfecção/métodos , Xenopus
11.
Eur J Neurosci ; 16(8): 1517-22, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12405965

RESUMO

Postsynaptic targeting of the Drosophila tumour suppressor discs-large (Dlg) critically depends on its SH3 and GK domains. Here, we asked whether these domains are also involved in subcellular targeting of the mammalian Dlg homolog SAP97 and its interacting partners in CNS cortical neurons by analysing a recently described mouse mutant lacking the SH3 and GK domains of SAP97. Both wildtype and truncated SAP97 were predominantly expressed in perinuclear regions, in a pattern suggesting association with the endoplasmic reticulum. Weaker immunoreactivity was found in neurites colocalizing with both dendritic and axonal markers. As SAP97 has been implicated in the early intracellular processing of the glutamate receptor GluR1, we studied biochemical maturation and subcellular localization of GluR1 in the mutants. Both the glycosylation pattern and synaptic clustering of GluR1 were indistinguishable from wildtype mice. Synaptic clustering of the guanylate kinase domain interacting protein GKAP was also intact. Our data demonstrate that truncation of the SH3 and GK domains of SAP97 in mice does neither change its subcellular distribution nor does it disrupt synaptic structure or protein clustering, as opposed to severe missorting of the respective mutant Dlg protein in Drosophila.


Assuntos
Compartimento Celular/genética , Diferenciação Celular/genética , Córtex Cerebral/anormalidades , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dendritos/genética , Dendritos/metabolismo , Dendritos/ultraestrutura , Proteína 1 Homóloga a Discs-Large , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Guanilato Quinases , Imuno-Histoquímica , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Receptores de AMPA/genética , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA