Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(5): 2470-2484, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35365802

RESUMO

The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD individuals. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we combined stem cell culturing with transplantation techniques to determine disease-specific properties inherent to ASD astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, this study determines that astrocytes derived from ASD iPSCs are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.


Assuntos
Astrócitos , Transtorno do Espectro Autista , Animais , Astrócitos/fisiologia , Transtorno do Espectro Autista/genética , Hipocampo/patologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
2.
J Proteome Res ; 19(9): 3856-3866, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786687

RESUMO

Aberrant protein synthesis and protein expression are a hallmark of many conditions ranging from cancer to Alzheimer's. Blood-based biomarkers indicative of changes in proteomes have long been held to be potentially useful with respect to disease prognosis and treatment. However, most biomarker efforts have focused on unlabeled plasma proteomics that include nonmyeloid origin proteins with no attempt to dynamically tag acute changes in proteomes. Herein we report a method for evaluating de novo protein synthesis in whole blood liquid biopsies. Using a modification of the "bioorthogonal noncanonical amino acid tagging" (BONCAT) protocol, rodent whole blood samples were incubated with l-azidohomoalanine (AHA) to allow incorporation of this selectively reactive non-natural amino acid within nascent polypeptides. Notably, failure to incubate the blood samples with EDTA prior to implementation of azide-alkyne "click" reactions resulted in the inability to detect probe incorporation. This live-labeling assay was sensitive to inhibition with anisomycin and nascent, tagged polypeptides were localized to a variety of blood cells using FUNCAT. Using labeled rodent blood, these tagged peptides could be consistently identified through standard LC/MS-MS detection of known blood proteins across a variety of experimental conditions. Furthermore, this assay could be expanded to measure de novo protein synthesis in human blood samples. Overall, we present a rapid and convenient de novo protein synthesis assay that can be used with whole blood biopsies that can quantify translational change as well as identify differentially expressed proteins that may be useful for clinical applications.


Assuntos
Alcinos , Azidas , Química Click , Reação de Cicloadição , Biossíntese de Proteínas
3.
Neurobiol Learn Mem ; 171: 107203, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32147585

RESUMO

The ribosomal p70 S6 Kinase 1 (S6K1) has been implicated in the etiology of complex neurological diseases including autism, depression and dementia. Though no major gene disruption has been reported in humans in RPS6KB1, single nucleotide variants (SNVs) causing missense mutations have been identified, which have not been assessed for their impact on protein function. These S6K1 mutations have the potential to influence disease progression and treatment response. We mined the Simon Simplex Collection (SSC) and SPARK autism database to find inherited SNVs in S6K1 and characterized the effect of two missense SNVs, Asp14Asn (allele frequency = 0.03282%) and Glu44Gln (allele frequency = 0.0008244%), on S6K1 function in HEK293, human ES cells and primary neurons. Expressing Asp14Asn in HEK293 cells resulted in increased basal phosphorylation of downstream targets of S6K1 and increased de novo translation. This variant also showed blunted response to the specific S6K1 inhibitor, FS-115. In human embryonic cell line Shef4, Asp14Asn enhanced spontaneous neural fate specification in the absence of differentiating growth factors. In addition to enhanced translation, neurons expressing Asp14Asn exhibited impaired dendritic arborization and increased levels of phosphorylated ERK 1/2. Finally, in the SSC families tracked, Asp14Asn segregated with lower IQ scores when found in the autistic individual rather than the unaffected sibling. The Glu44Gln mutation showed a milder, but opposite phenotype in HEK cells as compared to Asp14Asn. Although the Glu44Gln mutation displayed increased neuronal translation, it had no impact on neuronal morphology. Our results provide the first characterization of naturally occurring human S6K1 variants on cognitive phenotype, neuronal morphology and maturation, underscoring again the importance of translation control in neural development and plasticity.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia , Alelos , Animais , Forma Celular/genética , Frequência do Gene , Células HEK293 , Hipocampo/citologia , Humanos , Mutação , Neurogênese/fisiologia , Neurônios/citologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 70-kDa/genética
4.
Learn Mem ; 26(9): 332-342, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416906

RESUMO

Formation of eukaryotic initiation factor 4F (eIF4F) is widely considered to be the rate-limiting step in cap-dependent translation initiation. Components of eIF4F are often up-regulated in various cancers, and much work has been done to elucidate the role of each of the translation initiation factors in cancer cell growth and survival. In fact, many of the basic mechanisms describing how eIF4F is assembled and how it functions to regulate translation initiation were first investigated in cancer cell lines. These same eIF4F translational control pathways also are relevant for neuronal signaling that underlies long-lasting synaptic plasticity and memory, and in neurological diseases where eIF4F and its upstream regulators are dysregulated. Although eIF4F is important in cancer and for brain function, there is not always a clear path to use the results of studies performed in cancer models to inform one of the roles that the same translation factors have in neuronal signaling. Issues arise when extrapolating from cell lines to tissue, and differences are likely to exist in how eIF4F and its upstream regulatory pathways are expressed in the diverse neuronal subtypes found in the brain. This review focuses on summarizing the role of eIF4F and its accessory proteins in cancer, and how this information has been utilized to investigate neuronal signaling, synaptic function, and animal behavior. Certain aspects of eIF4F regulation are consistent across cancer and neuroscience, whereas some results are more complicated to interpret, likely due to differences in the complexity of the brain, its billions of neurons and synapses, and its diverse cell types.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Fator de Iniciação 4F em Eucariotos/biossíntese , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , Animais , Humanos , RNA Mensageiro/genética , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 116(7): 2707-2712, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692248

RESUMO

Inositol polyphosphate multikinase (IPMK), the key enzyme for the biosynthesis of higher inositol polyphosphates and phosphatidylinositol 3,4,5-trisphosphate, also acts as a versatile signaling player in regulating tissue growth and metabolism. To elucidate neurobehavioral functions of IPMK, we generated mice in which IPMK was deleted from the excitatory neurons of the postnatal forebrain. These mice showed no deficits in either novel object recognition or spatial memory. IPMK conditional knockout mice formed cued fear memory normally but displayed enhanced fear extinction. Signaling analyses revealed dysregulated expression of neural genes accompanied by selective activation of the mechanistic target of rapamycin (mTOR) regulatory enzyme p85 S6 kinase 1 (S6K1) in the amygdala following fear extinction. The IPMK mutants also manifested facilitated hippocampal long-term potentiation. These findings establish a signaling action of IPMK that mediates fear extinction.


Assuntos
Extinção Psicológica , Medo/psicologia , Memória , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Ativação Enzimática , Deleção de Genes , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prosencéfalo/fisiologia , Transdução de Sinais , Regulação para Cima
6.
Neuropsychopharmacology ; 44(2): 324-333, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30061744

RESUMO

Defects in the phosphoinositide 3-kinase (PI3K) pathway are shared characteristics in several brain disorders, including the inherited intellectual disability and autism spectrum disorder, fragile X syndrome (FXS). PI3K signaling therefore could serve as a therapeutic target for FXS and other brain disorders. However, broad inhibition of such a central signal transduction pathway involved in essential cellular functions may produce deleterious side effects. Pharmacological strategies that selectively correct the overactive components of the PI3K pathway while leaving other parts of the pathway intact may overcome these challenges. Here, we provide the first evidence that disease mechanism-based PI3K isoform-specific inhibition may be a viable treatment option for FXS. FXS is caused by loss of the fragile X mental retardation protein (FMRP), which translationally represses specific messenger RNAs, including the PI3K catalytic isoform p110ß. FMRP deficiency increases p110ß protein levels and activity in FXS mouse models and in cells from subjects with FXS. Here, we show that a novel, brain-permeable p110ß-specific inhibitor, GSK2702926A, ameliorates FXS-associated phenotypes on molecular, cellular, behavioral, and cognitive levels in two different FMRP-deficient mouse models. Rescued phenotypes included increased PI3K downstream signaling, protein synthesis rates, and dendritic spine density, as well as impaired social interaction and higher-order cognition. Several p110ß-selective inhibitors, for example, a molecule from the same chemotype as GSK2702926A, are currently being evaluated in clinical trials to treat cancer. Our results suggest that repurposing p110ß inhibitors to treat cognitive and behavioral defects may be a promising disease-modifying strategy for FXS and other brain disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Atividade Motora/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
7.
Pediatr Neurol ; 60: 1-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27267556

RESUMO

On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis (http://www.ninds.nih.gov/about_ninds/plans/tscler_research_plan.htm). In addition to the National Institute of Neurological Disorders and Stroke and Tuberous Sclerosis Alliance, participants in the strategic planning effort and workshop included representatives from six other Institutes of the National Institutes of Health, the Department of Defense Tuberous Sclerosis Complex Research Program, and a broad cross-section of basic scientists and clinicians with expertise in tuberous sclerosis complex along with representatives from the pharmaceutical industry. Here we summarize the outcomes from the extensive premeeting deliberations and final workshop recommendations, including (1) progress in the field since publication of the initial 2003 research plan for tuberous sclerosis complex, (2) the key gaps, needs, and challenges that hinder progress in tuberous sclerosis complex research, and (3) a new set of research priorities along with specific recommendations for addressing the major challenges in each priority area. The new research plan is organized around both short-term and long-term goals with the expectation that progress toward specific objectives can be achieved within a five to ten year time frame.


Assuntos
Pesquisa Biomédica , Esclerose Tuberosa/fisiopatologia , Esclerose Tuberosa/terapia , Animais , Modelos Animais de Doenças , Objetivos , Humanos , Planejamento Estratégico , Esclerose Tuberosa/genética , Estados Unidos
8.
J Neurosci ; 35(41): 13836-42, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468183

RESUMO

The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Modelos Animais de Doenças , Transdução de Sinais/fisiologia , Sirolimo/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Humanos , Modelos Biológicos
9.
Sci Signal ; 7(349): re10, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25351249

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous group of heritable neurodevelopmental disorders. Symptoms of ASD, which include deficits in social interaction skills, impaired communication ability, and ritualistic-like repetitive behaviors, appear in early childhood and continue throughout life. Genetic studies have revealed at least two clusters of genes frequently associated with ASD and intellectual disability: those encoding proteins involved in translational control and those encoding proteins involved in synaptic function. We hypothesize that mutations occurring in these two clusters of genes interfere with interconnected downstream signaling pathways in neuronal cells to cause ASD symptomatology. In this review, we discuss the monogenic forms of ASD caused by mutations in genes encoding for proteins that regulate translation and synaptic function. Specifically, we describe the function of these proteins, the intracellular signaling pathways that they regulate, and the current mouse models used to characterize the synaptic and behavioral features associated with their mutation. Finally, we summarize recent studies that have established a connection between mRNA translation and synaptic function in models of ASD and propose that dysregulation of one has a detrimental impact on the other.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas/genética , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Associadas SAP90-PSD95 , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
10.
J Neurosci ; 34(27): 9034-9, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24990923

RESUMO

Memory retrieval, often termed reconsolidation, can render previously consolidated memories susceptible to manipulation that can lead to alterations in memory strength. Although it is known that reconsolidation requires mammalian target of rapamycin complex 1 (mTORC1)-dependent translation, the specific contributions of its downstream effectors in reconsolidation are unclear. Using auditory fear conditioning in mice, we investigated the role of eukaryotic translation initiation factor 4E (eIF4E)-eIF4G interactions and p70 S6 kinase polypeptide 1 (S6K1) in reconsolidation. We found that neither 4EGI-1 (2-[(4-(3,4-dichlorophenyl)-thiazol-2-ylhydrazono)-3-(2-nitrophenyl)]propionic acid), an inhibitor of eFI4E-eIF4G interactions, nor PF-4708671 [2-((4-(5-ethylpyrimidin-4-yl)piperazin-1-yl)methyl)-5-(trifluoromethyl)-1H-benzo[d]imidazole], an inhibitor of S6K1, alone blocked the reconsolidation of auditory fear memory. In contrast, using these drugs in concert to simultaneously block eIF4E-eIF4G interactions and S6K1 immediately after memory reactivation significantly attenuated fear memory reconsolidation. Moreover, the combination of 4EGI-1 and PF-4708671 further destabilized fear memory 10 d after memory reactivation, which was consistent with experiments using rapamycin, an mTORC1 inhibitor. Furthermore, inhibition of S6K1 immediately after retrieval resulted in memory destabilization 10 d after reactivation, whereas inhibition of eIF4E-eIF4G interactions did not. These results indicate that the reconsolidation of fear memory requires concomitant association of eIF4E to eIF4G as well as S6K1 activity and that the persistence of memory at longer intervals after memory reactivation also requires mTORC1-dependent processes that involve S6K1. These findings suggest a potential mechanism for how mTORC1-dependent translation is fine tuned to alter memory persistence.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Rememoração Mental/fisiologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Estimulação Acústica , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Eletrochoque , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/fisiologia , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/fisiologia , Hidrazonas , Imidazóis/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Rememoração Mental/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrocompostos/farmacologia , Piperazinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Sirolimo/farmacologia , Tiazóis/farmacologia
11.
Stroke ; 45(4): 1131-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24619393

RESUMO

BACKGROUND AND PURPOSE: Prohibitin is a multi-functional protein involved in numerous cellular activities. Prohibitin overexpression protects neurons from injury in vitro, but it is unclear whether prohibitin can protect selectively vulnerable hippocampal CA1 neurons in a clinically relevant injury model in vivo and, if so, whether the salvaged neurons remain functional. METHODS: A mouse model of transient forebrain ischemia that mimics the brain damage produced by cardiac arrest in humans was used to test whether prohibitin expression protects CA1 neurons from injury. Prohibitin-expressing viral vector was microinjected in mouse hippocampus to upregulate prohibitin. RESULTS: Prohibitin overexpression protected CA1 neurons from transient forebrain ischemia. The protection was associated with dampened postischemic reactive oxygen species generation, reduced mitochondrial cytochrome c release, and decreased caspase-3 activation. Importantly, the improvement in CA1 neuronal viability translated into an improvement in hippocampal function: prohibitin expression ameliorated the spatial memory deficit induced by ischemia, assessed by the Y-maze test, and restored postischemic synaptic plasticity assessed by long-term potentiation, indicating that the neurons spared form ischemic damage were functionally competent. CONCLUSIONS: These data demonstrate that prohibitin overexpression protects highly vulnerable CA1 neurons from ischemic injury in vivo and suggest that the effect is mediated by reduction of postischemic reactive oxygen species generation and preservation of mitochondrial outer membrane integrity that prevents activation of apoptosis. Measures to enhance prohibitin expression could have translational value in ischemic brain injury and, possibly, other forms of brain injury associated with mitochondrial dysfunction.


Assuntos
Região CA1 Hipocampal/patologia , Terapia Genética/métodos , Ataque Isquêmico Transitório/patologia , Proteínas Repressoras/genética , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Contagem de Células , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Parada Cardíaca/patologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Proibitinas , Espécies Reativas de Oxigênio
12.
Sci Signal ; 7(308): ra4, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24425786

RESUMO

Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. We showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D2R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D2R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP). Proteomic mass spectrometry revealed marked changes in the pattern of protein synthesis after acute exposure of cultured striatal neurons to haloperidol, including increased abundance of cytoskeletal proteins and proteins associated with translation machinery. These proteomic changes coincided with increased morphological complexity of neurons that was diminished by inhibition of downstream effectors of mTORC1, suggesting that mTORC1-dependent translation enhances neuronal complexity in response to haloperidol. In vivo, we observed rapid morphological changes with a concomitant increase in the abundance of cytoskeletal proteins in cortical neurons of haloperidol-injected mice. These results suggest a mechanism for both the acute and long-term actions of antipsychotics.


Assuntos
Antipsicóticos/farmacologia , Complexos Multiproteicos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Animais , Células Cultivadas , Haloperidol/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
PLoS Genet ; 9(10): e1003845, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098148

RESUMO

Macroautophagy is a conserved mechanism for the bulk degradation of proteins and organelles. Pathological studies have implicated defective macroautophagy in neurodegeneration, but physiological functions of macroautophagy in adult neurons remain unclear. Here we show that Atg7, an essential macroautophagy component, regulates dopaminergic axon terminal morphology. Mature Atg7-deficient midbrain dopamine (DA) neurons harbored selectively enlarged axonal terminals. This contrasted with the phenotype of DA neurons deficient in Pten - a key negative regulator of the mTOR kinase signaling pathway and neuron size - that displayed enlarged soma but unaltered axon terminals. Surprisingly, concomitant deficiency of both Atg7 and Pten led to a dramatic enhancement of axon terminal enlargement relative to Atg7 deletion alone. Similar genetic interactions between Atg7 and Pten were observed in the context of DA turnover and DA-dependent locomotor behaviors. These data suggest a model for morphological regulation of mature dopaminergic axon terminals whereby the impact of mTOR pathway is suppressed by macroautophagy.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , PTEN Fosfo-Hidrolase/genética , Terminações Pré-Sinápticas/metabolismo , Serina-Treonina Quinases TOR/genética , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Morfogênese/genética , Atividade Motora/genética , Atividade Motora/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Nat Med ; 19(11): 1473-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24141422

RESUMO

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice rescued working memory deficits, demonstrating reversal of this FXS phenotype. Finally, we find that FMRP and CPEB1 balance translation at the level of polypeptide elongation. Our results suggest that disruption of translational homeostasis is causal for FXS and that the maintenance of this homeostasis by FMRP and CPEB1 is necessary for normal neurologic function.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Regiões 3' não Traduzidas , Animais , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/psicologia , Hipocampo/fisiopatologia , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Cell Rep ; 4(3): 405-12, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911285

RESUMO

Angelman syndrome (AS) is associated with symptoms that include autism, intellectual disability, motor abnormalities, and epilepsy. We recently showed that AS model mice have increased expression of the alpha1 subunit of Na/K-ATPase (α1-NaKA) in the hippocampus, which was correlated with increased expression of axon initial segment (AIS) proteins. Our developmental analysis revealed that the increase in α1-NaKA expression preceded that of the AIS proteins. Therefore, we hypothesized that α1-NaKA overexpression drives AIS abnormalities and that by reducing its expression these and other phenotypes could be corrected in AS model mice. Herein, we report that the genetic normalization of α1-NaKA levels in AS model mice corrects multiple hippocampal phenotypes, including alterations in the AIS, aberrant intrinsic membrane properties, impaired synaptic plasticity, and memory deficits. These findings strongly suggest that increased expression of α1-NaKA plays an important role in a broad range of abnormalities in the hippocampus of AS model mice.


Assuntos
Síndrome de Angelman/genética , Síndrome de Angelman/patologia , Hipocampo/metabolismo , Hipocampo/patologia , ATPase Trocadora de Sódio-Potássio/genética , Síndrome de Angelman/enzimologia , Síndrome de Angelman/metabolismo , Animais , Anquirinas/biossíntese , Modelos Animais de Doenças , Feminino , Hipocampo/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.6/biossíntese , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Subunidades Proteicas , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
J Neurosci ; 32(40): 13701-8, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23035082

RESUMO

Glucagon-like peptide-1 (GLP-1) is an endogenous intestinal peptide that enhances glucose-stimulated insulin secretion. Its natural cleavage product GLP-1(9-36)(amide) possesses distinct properties and does not affect insulin secretion. Here we report that pretreatment of hippocampal slices with GLP-1(9-36)(amide) prevented impaired long-term potentiation (LTP) and enhanced long-term depression induced by exogenous amyloid ß peptide Aß((1-42)). Similarly, hippocampal LTP impairments in amyloid precursor protein/presenilin 1 (APP/PS1) mutant mice that model Alzheimer's disease (AD) were prevented by GLP-1(9-36)(amide). In addition, treatment of APP/PS1 mice with GLP-1(9-36)(amide) at an age at which they display impaired spatial and contextual fear memory resulted in a reversal of their memory defects. At the molecular level, GLP-1(9-36)(amide) reduced elevated levels of mitochondrial-derived reactive oxygen species and restored dysregulated Akt-glycogen synthase kinase-3ß signaling in the hippocampus of APP/PS1 mice. Our findings suggest that GLP-1(9-36)(amide) treatment may have therapeutic potential for AD and other diseases associated with cognitive dysfunction.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/uso terapêutico , Peptídeos/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/farmacologia , Animais , Antioxidantes/farmacologia , Aprendizagem por Associação/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nootrópicos/farmacologia , Compostos Organofosforados/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Presenilina-1/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
17.
Biol Psychiatry ; 72(3): 182-90, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22381732

RESUMO

BACKGROUND: Angelman syndrome (AS) is a human neuropsychiatric disorder associated with autism, mental retardation, motor abnormalities, and epilepsy. In most cases, AS is caused by the deletion of the maternal copy of UBE3A gene, which encodes the enzyme ubiquitin ligase E3A, also termed E6-AP. A mouse model of AS has been generated and these mice exhibit many of the observed neurological alterations in humans. Because of clinical and neuroanatomical similarities between AS and schizophrenia, we examined AS model mice for alterations in the neuregulin-ErbB4 pathway, which has been implicated in the pathophysiology of schizophrenia. We focused our studies on the hippocampus, one of the major brain loci impaired in AS mice. METHODS: We determined the expression of neuregulin 1 and ErbB4 receptors in AS mice and wild-type littermates (ages 10-16 weeks) and studied the effects of ErbB inhibition on long-term potentiation in hippocampal area cornu ammonis 1 and on hippocampus-dependent contextual fear memory. RESULTS: We observed enhanced neuregulin-ErbB4 signaling in the hippocampus of AS model mice and found that ErbB inhibitors could reverse deficits in long-term potentiation, a cellular substrate for learning and memory. In addition, we found that an ErbB inhibitor enhanced long-term contextual fear memory in AS model mice. CONCLUSIONS: Our findings suggest that neuregulin-ErbB4 signaling is involved in synaptic plasticity and memory impairments in AS model mice, suggesting that ErbB inhibitors have therapeutic potential for the treatment of AS.


Assuntos
Síndrome de Angelman/psicologia , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Transtornos da Memória/psicologia , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Animais , Western Blotting , Canais de Cloreto/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/psicologia , Fenômenos Eletrofisiológicos , Espaço Extracelular/efeitos dos fármacos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Neuregulina-1/fisiologia , Receptores de AMPA/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidores
18.
Neurobiol Dis ; 45(3): 1101-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198573

RESUMO

Tuberous sclerosis complex (TSC) and fragile X syndrome (FXS) are caused by mutations in negative regulators of translation. FXS model mice exhibit enhanced metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). Therefore, we hypothesized that a mouse model of TSC, ΔRG transgenic mice, also would exhibit enhanced mGluR-LTD. We measured the impact of TSC2-GAP mutations on the mTORC1 and ERK signaling pathways and protein synthesis-dependent hippocampal synaptic plasticity in ΔRG transgenic mice. These mice express a dominant/negative TSC2 that binds to TSC1, but has a deletion and substitution mutation in its GAP-domain, resulting in inactivation of the complex. Consistent with previous studies of several other lines of TSC model mice, we observed elevated S6 phosphorylation in the brains of ΔRG mice, suggesting upregulated translation. Surprisingly, mGluR-LTD was not enhanced, but rather was impaired in the ΔRG transgenic mice, indicating that TSC and FXS have divergent synaptic plasticity phenotypes. Similar to patients with TSC, the ΔRG transgenic mice exhibit elevated ERK signaling. Moreover, the mGluR-LTD impairment displayed by the ΔRG transgenic mice was rescued with the MEK-ERK inhibitor U0126. Our results suggest that the mGluR-LTD impairment observed in ΔRG mice involves aberrant TSC1/2-ERK signaling.


Assuntos
Depressão Sináptica de Longo Prazo/genética , Sistema de Sinalização das MAP Quinases/genética , Receptores de Glutamato Metabotrópico/metabolismo , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/deficiência , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptores de Glutamato Metabotrópico/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
19.
Neurobiol Dis ; 45(1): 156-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21827857

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disorder characterized by the development of hamartomas in multiple organs. Neurological manifestation includes cortical dysplasia, epilepsy, and cognitive deficits such as mental impairment and autism. We measured the impact of TSC2-GAP mutations on cognitive processes and behavior in, ΔRG transgenic mice that express a dominant/negative TSC2 that binds to TSC1, but has mutations affecting its GAP domain and its rabaptin-5 binding motif, resulting in inactivation of the TSC1/2 complex. We performed a behavioral characterization of the ΔRG transgenic mice and found that they display mild, but significant impairments in social behavior and rotarod motor learning. These findings suggest that the ΔRG transgenic mice recapitulate some behavioral abnormalities observed in human TSC patients.


Assuntos
Comportamento Animal/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Comportamento Social , Esclerose Tuberosa/fisiopatologia , Animais , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Medo/fisiologia , Asseio Animal/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Teste de Desempenho do Rota-Rod , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
20.
J Neurosci ; 31(45): 16086-93, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072660

RESUMO

Local regulation of protein synthesis in neurons has emerged as a leading research focus because of its importance in synaptic plasticity and neurological diseases. The complexity of neuronal subcellular domains and their distance from the soma demand local spatial and temporal control of protein synthesis. Synthesis of many synaptic proteins, such as GluR and PSD-95, is under local control. mRNA binding proteins (RBPs), such as FMRP, function as key regulators of local RNA translation, and the mTORC1 pathway acts as a primary signaling cascade for regulation of these proteins. Much of the regulation occurs through structures termed RNA granules, which are based on reversible aggregation of the RBPs, some of which have aggregation prone domains with sequence features similar to yeast prion proteins. Mutations in many of these RBPs are associated with neurological diseases, including FMRP in fragile X syndrome; TDP-43, FUS (fused in sarcoma), angiogenin, and ataxin-2 in amyotrophic lateral sclerosis; ataxin-2 in spinocerebellar ataxia; and SMN (survival of motor neuron protein) in spinal muscular atrophy.


Assuntos
Doenças do Sistema Nervoso , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , RNA/metabolismo , Animais , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Sinapses/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA