Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 35(2): 731-741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622866

RESUMO

BACKGROUND/AIM: Anastomotic leakage is a feared complication in colorectal surgery. Postoperative peritoneal adhesions can also cause life-threatening conditions. Nanofibrous materials showed their pro-healing properties in various studies. The aim of the study was to evaluate the impact of double-layered nanofibrous materials on anastomotic healing and peritoneal adhesions formation. MATERIALS AND METHODS: Two versions of double-layered materials from polycaprolactone and polyvinyl alcohol were applied on defective anastomosis on the small intestine of healthy pigs. The control group remained with uncovered defect. Tissue specimens were subjected to histological analysis and adhesion scoring after 3 weeks of observation. RESULTS: The wound healing was inferior in the experimental groups, however, no anastomotic leakage was observed and the applied material always kept covering the defect. The extent of adhesions was larger in the experimental groups. CONCLUSION: Nanofibrous materials may prevent anastomotic leakage but delay healing.


Assuntos
Fístula Anastomótica , Nanofibras , Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica/etiologia , Fístula Anastomótica/patologia , Fístula Anastomótica/prevenção & controle , Animais , Colo/patologia , Suínos , Aderências Teciduais/prevenção & controle , Cicatrização
2.
Biomedicines ; 9(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494257

RESUMO

Anastomotic leakage is a dreadful complication in colorectal surgery. It has a negative impact on postoperative mortality, long term life quality and oncological results. Nanofibrous polycaprolactone materials have shown pro-healing properties in various applications before. Our team developed several versions of these for healing support of colorectal anastomoses with promising results in previous years. In this study, we developed highly porous biocompatible polycaprolactone nanofibrous patches. We constructed a defective anastomosis on the large intestine of 16 pigs, covered the anastomoses with the patch in 8 animals (Experimental group) and left the rest uncovered (Control group). After 21 days of observation we evaluated postoperative changes, signs of leakage and other complications. The samples were assessed histologically according to standardized protocols. The material was easy to work with. All animals survived with no major complication. There were no differences in intestinal wall integrity between the groups and there were no signs of anastomotic leakage in any animal. The levels of collagen were significantly higher in the Experimental group, which we consider to be an indirect sign of higher mechanical strength. The material shall be further perfected in the future and possibly combined with active molecules to specifically influence the healing process.

3.
J Biomed Mater Res A ; 106(8): 2200-2212, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29637696

RESUMO

Nanofibrous materials present unique properties favorable in many biomedicine and industrial applications. In this research we evaluated biodegradation, tissue response and general toxicity of nanofibrous poly(lactic acid) (PLA) and polycaprolactone (PCL) scaffolds produced by conventional method of electrospinning and using NanoMatrix3D® (NM3D® ) technology. Mass density, scanning electron microscopy and in vitro degradation (static and dynamic) were used for material characterization, and subcutaneous, intramuscular and intraperitoneal implantation - for in vivo tests. Biochemical blood analysis and histology were used to assess toxicity and tissue response. Pore size and fiber diameter did not differ in conventional and NM3D® PLA and PCL materials, but mass density was significantly lower in NM3D® ones. Scaffolds made by conventional method showed toxic effect during the in-vivo tests due to residual concentration of chloroform that released with material degradation. NM3D® method allowed cleaning scaffolds from residual solutions that made them nontoxic and biocompatible. Subcutaneous, intramuscular and intraperitoneal implantation of PCL and PLA NM3D® electrospun nanofibrous scaffolds showed their appropriate cell conductive properties, tissue and vessels formation in all sites. Thus, NM3D® PCL and PLA nanofibrous electrospun scaffolds can be used in the field of tissue engineering, surgery, wound healing, drug delivery, and so forth, due to their unique properties, nontoxicity and biocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2200-2212, 2018.


Assuntos
Nanofibras/toxicidade , Nanopartículas/toxicidade , Poliésteres/toxicidade , Alicerces Teciduais/química , Animais , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA