Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 287(3): E431-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15126240

RESUMO

Glucagon has a short plasma t(1/2) in vivo, with renal extraction playing a major role in its elimination. Glucagon is degraded by neutral endopeptidase (NEP) 24.11 in vitro, but the physiological relevance of NEP 24.11 in glucagon metabolism is unknown. Therefore, the influence of candoxatril, a selective NEP inhibitor, on plasma levels of endogenous and exogenous glucagon was examined in anesthetized pigs. Candoxatril increased endogenous glucagon concentrations, from 6.3 +/- 2.5 to 20.7 +/- 6.3 pmol/l [COOH-terminal (C)-RIA, P < 0.05]. During glucagon infusion, candoxatril increased the t(1/2) determined by C-RIA (from 3.0 +/- 0.5 to 17.0 +/- 2.5 min, P < 0.005) and midregion (M)-RIA (2.8 +/- 0.5 to 17.0 +/- 3.0 min, P < 0.01) and reduced metabolic clearance rates (MCR; 19.1 +/- 3.2 to 9.4 +/- 2.0 ml.kg(-1).min(-1), P < 0.02, C-RIA; 19.2 +/- 4.8 to 9.0 +/- 2.3 ml.kg(-1).min(-1), P < 0.05, M-RIA). However, neither t(1/2) nor MCR determined by NH2-terminal (N)-RIA were significantly affected (t(1/2), 2.7 +/- 0.4 to 4.5 +/- 1.6 min; MCR, 30.3 +/- 6.4 to 28.5 +/- 9.0 ml.kg(-1).min(-1)), suggesting that candoxatril had no effect on NH2-terminal degradation but leads to the accumulation of NH2-terminally truncated forms of glucagon. Determination of arteriovenous glucagon concentration differences revealed that renal glucagon extraction was reduced (but not eliminated) by candoxatril (from 40.4 +/- 3.8 to 18.6 +/- 4.1%, P < 0.02, C-RIA; 29.2 +/- 3.1 to 14.7 +/- 2.2%, P < 0.02, M-RIA; 26.5 +/- 4.0 to 19.7 +/- 3.5%, P < 0.06, N-RIA). Femoral extraction was reduced by candoxatril when determined by C-RIA (from 22.7 +/- 2.4 to 8.0 +/- 5.1%, P < 0.05) but was not changed significantly when determined using M- or N-RIAs (10.0 +/- 2.8 to 4.7 +/- 3.7%, M-RIA; 10.5 +/- 2.5 to 7.8 +/- 4.2%, N-RIA). This study provides evidence that NEP 24.11 is an important mediator of the degradation of both endogenous and exogenous glucagon in vivo.


Assuntos
Glucagon/metabolismo , Neprilisina/metabolismo , Animais , Sinergismo Farmacológico , Glucagon/administração & dosagem , Glucagon/sangue , Indanos/farmacologia , Infusões Intravenosas , Neprilisina/antagonistas & inibidores , Concentração Osmolar , Propionatos/farmacologia , Inibidores de Proteases/farmacologia , Radioimunoensaio/métodos , Suínos
2.
Am J Physiol Endocrinol Metab ; 285(3): E552-60, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12759222

RESUMO

Glucagon metabolism under basal (endogenous) conditions and during intravenous glucagon infusion was studied in anesthetized pigs by use of midregion (M), COOH-terminal (C), and NH2-terminal (N)-RIAs. Arteriovenous concentration differences revealed a negative extraction of endogenous glucagon immunoreactivity across the portal bed (-35.4 +/- 11.0, -40.3 +/- 9.6, -35.6 +/- 16.9%, M-, C-, N-RIA, respectively), reflecting net secretion of pancreatic glucagon and intestinal glicentin and oxyntomodulin, but under exogenous conditions, a net extraction occurred (11.6 +/- 3.6 and 18.6 +/- 5.7%, C- and N-RIA, respectively). Hindlimb extraction of endogenous (17.4 +/- 3.7%, C-RIA) and exogenous (29.1 +/- 4.8 and 19.8 +/- 5.1%, C- and M-RIA) glucagon was detected, indicating M and C cleavage of the molecule. Renal extraction of glucagon was detected by all assays under endogenous (19.4 +/- 6.7, 33.9 +/- 7.1, 29.5 +/- 6.7%, M-, C-, N-RIA) and exogenous conditions (46.9 +/- 4.8, 46.4 +/- 6.0, 47.0 +/- 7.7%; M-, C-, N-RIA), indicating substantial elimination of the peptide. Hepatic glucagon extraction was undetectable under basal conditions and detected only by M-RIA (10.0 +/- 3.8%) during glucagon infusion, indicating limited midregional cleavage of the molecule. The plasma half-life determined by C- and N-RIAs (2.7 +/- 0.2 and 2.3 +/- 0.2 min) were similar, but both were shorter than when determined by M-RIA (3.2 +/- 0.2 min, P < 0.02). Metabolic clearance rates were similar regardless of assay (14.4 +/- 1.1, 13.6 +/- 1.7, 17.0 +/- 1.7 ml x kg-1 x min-1, M-, C-, N-RIA). Porcine plasma degraded glucagon, but this was not significantly affected by the dipeptidyl peptidase IV (DPP IV) inhibitor valine-pyrrolidide, and in anesthetized pigs, glucagon's metabolic stability was unchanged by DPP IV inhibition. We conclude that tissue-specific metabolism of glucagon occurs, with the kidney being the main site of removal and the liver playing little, if any, role. Furthermore, valine-pyrrolidide has no effect on glucagon stability, suggesting that DPP IV is unimportant in glucagon metabolism in vivo, in contrast to its significant role in the metabolism of the other proglucagon-derived peptides and glucose-dependent insulinotropic polypeptide.


Assuntos
Fármacos Gastrointestinais/sangue , Fármacos Gastrointestinais/farmacocinética , Glucagon/sangue , Glucagon/farmacocinética , Anestesia , Animais , Artérias Carótidas , Dipeptidil Peptidase 4/metabolismo , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Pirróis/farmacologia , Suínos , Valina/farmacologia , Veias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA