Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Biol Chem ; 300(7): 107482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897567

RESUMO

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.


Assuntos
Gangliosídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Gangliosídeos/metabolismo , Camundongos , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lipossomos/metabolismo , Lectinas/metabolismo , Lectinas/química , Ligação Proteica , Antígenos CD/metabolismo , Antígenos CD/genética
2.
Anal Chem ; 95(29): 10903-10912, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439544

RESUMO

Application of the prostate-specific antigen (PSA) test, which measures PSA levels in blood, is standard in prostate cancer (PCa) screening. However, because PSA levels may be elevated for reasons other than PCa, it leads to high rates of misdiagnosis and overtreatment. Recently, alteration in the N-glycan sialylation of PSA, specifically increased levels of α2-3-linked N-acetylneuraminic acid (α2-3-Neu5Ac or α2-3-sialic acid), was identified as a potential biomarker for clinically significant PCa. Here, we introduce a robust top-down native mass spectrometry (MS) approach, performed using a combination of α2-3-Neu5Ac-specific and nonspecific neuraminidases and employing center-of-mass monitoring (CoMMon), for quantifying the levels of α2-3-Neu5Ac as a fraction of total N-linked Neu5Ac present on PSA extracted from blood serum. To illustrate the potential of the assay for clinical diagnosis and disease staging of PCa, the percentages of α2-3-Neu5Ac on PSA (%α23PSA) in the serum of low-grade (International Society of Urological Pathology Grade Group/GG1), intermediate-grade (GG2), and high-grade (GG3,4,5) PCa individuals were measured. We observed a high sensitivity (85.5%) and specificity (84.6%) for discrimination of GG1 from clinically significant GG2-5 patients when using a %α23PSA test cut-off of 28.0%. Our results establish that the %α23PSA in blood serum PSA, which can be precisely measured in a non-invasive manner with our dual neuraminidase native MS/CoMMon assay, can discriminate between clinically significant PCa (GG2-5) and low-grade PCa (GG1). Such discrimination has not been previously achieved and represents an important clinical need. This assay could greatly improve the standard PSA test and serve as a valuable PCa diagnostic tool.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Ácido N-Acetilneuramínico , Neoplasias da Próstata/patologia , Biomarcadores , Biópsia Líquida , Biópsia
3.
ACS Chem Biol ; 16(11): 2673-2689, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34661385

RESUMO

The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galß1-4GlcNAc and Neu5Acα2-3Galß1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galß1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galß1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.


Assuntos
Metabolismo dos Carboidratos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Sulfatos/metabolismo , Linhagem Celular , Regulação para Baixo , Humanos , Ligantes , Espectrometria de Massas , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Regulação para Cima
4.
Nat Commun ; 11(1): 5091, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037195

RESUMO

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer's disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns.


Assuntos
Polissacarídeos/análise , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Células CHO , Cricetulus , Feminino , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Células K562 , Espectrometria de Massas , Polissacarídeos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/isolamento & purificação , Ácidos Siálicos/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Baço/citologia , Baço/metabolismo , Estreptavidina/metabolismo
5.
Commun Biol ; 2: 52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729188

RESUMO

EPDR1, a member of the ependymin-related protein family, is a relatively uncharacterized protein found in the lysosomes and secretomes of most vertebrates. Despite having roles in human disease and health, the molecular functions of EPDR1 remain unknown. Here, we present crystal structures of human EPDR1 and reveal that the protein adopts a fold previously seen only in bacterial proteins related to the LolA lipoprotein transporter. EPDR1 forms a homodimer with an overall shape resembling a half-shell with two non-overlapping hydrophobic grooves on the flat side of the hemisphere. EPDR1 can interact with membranes that contain negatively charged lipids, including BMP and GM1, and we suggest that EPDR1 may function as a lysosomal activator protein or a lipid transporter. A phylogenetic analysis reveals that the fold is more widely distributed than previously suspected, with representatives identified in all branches of cellular life.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Gangliosídeo G(M1)/química , Lisofosfolipídeos/química , Monoglicerídeos/química , Proteínas de Neoplasias/química , Proteínas Periplásmicas de Ligação/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Gangliosídeo G(M1)/metabolismo , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisofosfolipídeos/metabolismo , Lisossomos/metabolismo , Modelos Moleculares , Monoglicerídeos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
ACS Nano ; 12(11): 10665-10682, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30234973

RESUMO

Homotypic interactions of viral capsid proteins are common, driving viral capsid self-formation. By taking advantage of such interactions of the norovirus shell (S) domain that naturally builds the interior shells of norovirus capsids, we have developed a technology to produce 60-valent, icosahedral S60 nanoparticles through the E. coli system. This has been achieved by several modifications to the S domain, including an R69A mutation to destruct an exposed proteinase cleavage site and triple cysteine mutations (V57C/Q58C/S136C) to establish inter-S domain disulfide bonds for enhanced inter-S domain interactions. The polyvalent S60 nanoparticle with 60 exposed S domain C-termini offers an ideal platform for antigen presentation, leading to enhanced immunogenicity to the surface-displayed antigens for vaccine development. This was proven by constructing a chimeric S60 nanoparticle displaying 60 rotavirus (RV) VP8* proteins, the major RV-neutralizing antigen. These S60-VP8* particles are easily produced and elicited high IgG response in mice toward the displayed VP8* antigens. The mouse antisera after immunization with the S60-VP8* particles exhibited high blockades against RV VP8* binding to its glycan ligands and high neutralizing activities against RV infection in culture cells. The three-dimensional structures of the S60 and S60-VP8* particles were studied. Furthermore, the S60 nanoparticle can display other antigens, supporting the notion that the S60 nanoparticle is a multifunctional vaccine platform. Finally, the intermolecular disulfide bond approach may be used to stabilize other viral-like particles to display foreign antigens for vaccine development.


Assuntos
Bioengenharia , Nanopartículas/química , Rotavirus/imunologia , Vacinas Virais/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Rotavirus/isolamento & purificação , Vacinas Virais/química
7.
Elife ; 72018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30109849

RESUMO

Membrane proteins are difficult to work with due to their insolubility in aqueous solution and quite often their poor stability in detergent micelles. Here, we present the peptidisc for their facile capture into water-soluble particles. Unlike the nanodisc, which requires scaffold proteins of different lengths and precise amounts of matching lipids, reconstitution of detergent solubilized proteins in peptidisc only requires a short amphipathic bi-helical peptide (NSPr) and no extra lipids. Multiple copies of the peptide wrap around to shield the membrane-exposed part of the target protein. We demonstrate the effectiveness of this 'one size fits all' method using five different membrane protein assemblies (MalFGK2, FhuA, SecYEG, OmpF, BRC) during 'on-column', 'in-gel', and 'on-bead' reconstitution embedded within the membrane protein purification protocol. The peptidisc method is rapid and cost-effective, and it may emerge as a universal tool for high-throughput stabilization of membrane proteins to advance modern biological studies.


Assuntos
Proteínas de Membrana/química , Peptídeos/química , Água/química , Transportadores de Cassetes de Ligação de ATP/química , Proteínas da Membrana Bacteriana Externa/química , Detergentes/química , Proteínas de Escherichia coli/química , Lipídeos/química , Proteínas de Membrana/isolamento & purificação , Micelas , Porinas/química , Canais de Translocação SEC/química , Solubilidade
8.
Org Biomol Chem ; 16(11): 1939-1957, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492483

RESUMO

Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall that is critical for their survival. The largest structural component of the cell wall, the mycolyl-arabinogalactan-peptidoglycan complex, has at its core a galactan domain composed of d-galactofuranose residues. Mycobacterial galactan biosynthesis has been proposed to involve two glycosyltransferases, GlfT1 and GlfT2, which elongate polyprenol-pyrophosphate linked glycosyl acceptor substrates using UDP-galactofuranose as the donor substrate. We here report the first chemical synthesis of GlfT1 and GlfT2 acceptor substrates containing pyrophosphate and polyprenol moieties (compounds 3, 4, 22 and 23). The approach involves chemical synthesis of an oligosaccharide, subsequent phosphorylation at the reducing end and coupling to a polyprenol phosphate. These compounds were shown to be substrates for either GlfT1 (22 and 23) or GlfT2 (3 and 4) and all were substantially more active than the corresponding alkyl glycoside substrates reported previously. Mass spectrometric analysis of the products formed from the reaction of 3, 4, 22 and 23 with the respective cognate enzyme and UDP-galactofuranose provide additional evidence for the galactan biosynthetic model in which GlfT1 adds the first two galactofuranose residues with the remainder being installed via GlfT2. Overall, these results highlight the importance of the pyrophosphate motif in recognition of acceptor substrates by both enzymes and demonstrate a straightforward route for the preparation of such compounds. The work also provides additional support for the process by which this important glycan is biosynthesized using, for the first time, close structural analogs to the natural substrates.


Assuntos
Difosfatos/metabolismo , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Oligossacarídeos/metabolismo , Difosfatos/síntese química , Difosfatos/química , Hemiterpenos , Humanos , Oligossacarídeos/síntese química , Oligossacarídeos/química , Pentanóis/síntese química , Pentanóis/química , Pentanóis/metabolismo , Especificidade por Substrato , Tuberculose/microbiologia
9.
J Am Soc Mass Spectrom ; 28(10): 2054-2065, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28681358

RESUMO

The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. Graphical Abstract ᅟ.


Assuntos
Gramicidina/química , Nanoestruturas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetatos/química , Butanóis/química , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Gases/química , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos/química , Fosfatidilcolinas/química , Multimerização Proteica , Espectrometria de Massas por Ionização por Electrospray/instrumentação
10.
J Am Soc Mass Spectrom ; 27(5): 876-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26944280

RESUMO

Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αß-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.


Assuntos
Antineoplásicos/metabolismo , Descoberta de Drogas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/análise , Química Encefálica , Colchicina/análogos & derivados , Colchicina/análise , Colchicina/metabolismo , Ligação Proteica , Suínos , Moduladores de Tubulina/análise
11.
J Am Chem Soc ; 137(16): 5248-51, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25860443

RESUMO

We describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based discovery (GE-FBD) uses selection of phage-displayed glycopeptides to dock a glycan fragment at the CRD and guide selection of synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10(8) glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40-50-fold enhancement in affinity over methyl α-d-mannopyranoside (MeMan). Lectin array suggested specificity: Man-WYD derivative bound only to 3 out of 17 proteins­ConA, LcH, and PSA­that bind to Man. An X-ray structure of ConA:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking, but their extra-CRD binding modes are significantly different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.


Assuntos
Canavalia/metabolismo , Concanavalina A/metabolismo , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Canavalia/química , Concanavalina A/química , Cristalografia por Raios X , Glicopeptídeos/genética , Humanos , Ligantes , Manose/análogos & derivados , Manose/metabolismo , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Ligação Proteica
12.
PLoS Pathog ; 10(8): e1004334, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25165982

RESUMO

The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/enzimologia , Acetilação , Proteínas de Bactérias/química , Sequência de Bases , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Dados de Sequência Molecular , Estrutura Quaternária de Proteína
13.
J Am Soc Mass Spectrom ; 25(5): 751-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24658801

RESUMO

This paper reports on the first experimental study of the energies of noncovalent fluorine bonding in a protein-ligand complex in the absence of solvent. Arrhenius parameters were measured for the dissociation of gaseous deprotonated ions of complexes of bovine ß-lactoglobulin (Lg), a model lipid-binding protein, and four fluorinated analogs of stearic acid (SA), which contained (X =) 13, 15, 17, or 21 fluorine atoms. In all cases, the activation energies (E(a)) measured for the loss of neutral XF-SA from the (Lg + XF-SA)7⁻ ions are larger than for SA. From the kinetic data, the average contribution of each > CF2 group to E(a) was found to be ~1.1 kcal mol⁻¹, which is larger than the ~0.8 kcal mol⁻¹ value reported for > CH2 groups. Based on these results, it is proposed that fluorocarbon­protein interactions are inherently stronger (enthalpically) than the corresponding hydrocarbon interactions.


Assuntos
Hidrocarbonetos Fluorados/química , Lactoglobulinas/química , Modelos Moleculares , Ácidos Esteáricos/química , Animais , Sítios de Ligação , Bovinos , Transferência de Energia , Halogenação , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lactoglobulinas/metabolismo , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Estabilidade Proteica , Espectrometria de Massas por Ionização por Electrospray , Ácidos Esteáricos/síntese química , Ácidos Esteáricos/metabolismo , Volatilização
14.
J Biol Chem ; 289(9): 6006-19, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24398681

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked ß-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating ß-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel ß-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.


Assuntos
Carboidratos Epimerases/química , Proteínas Periplásmicas/química , Pseudomonas syringae/enzimologia , Alginatos/química , Cálcio/química , Cálcio/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Catálise , Cristalografia por Raios X , Ácido Glucurônico/biossíntese , Ácido Glucurônico/química , Ácido Glucurônico/genética , Ácidos Hexurônicos/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Estrutura Secundária de Proteína , Pseudomonas syringae/genética , Relação Estrutura-Atividade
15.
ACS Chem Biol ; 9(2): 443-50, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24195775

RESUMO

Light-responsive ligands are useful tools in biochemistry and cell biology because the function of these ligands can be spatially and temporally controlled. Conventional design of such ligands relies on previously available data about the structure of both the ligand and the receptor. In this paper, we describe de novo discovery of light-responsive ligands through screening of a genetically encoded light-responsive library. We ligated a photoresponsive azobenzene core to a random CX7C peptide library displayed on the coat protein of M13 phage. A one-pot alkylation/reduction of the cysteines yielded a photoresponsive library of random heptapeptide macrocycles with over 2 × 10(8) members. We characterized the reaction on-phage and optimized the yield of the modifications in phage libraries. Screening of the library against streptavidin yielded three macrocycles that bind to streptavidin in the dark and cease binding upon irradiation with 370 nm light. All ligands restored their binding properties upon thermal relaxation and could be turned ON and OFF for several cycles. We measured dissociation constants, Kd, by electrospray ionization mass spectrometry (ESI-MS) binding assay. For ligand ACGFERERTCG, the Kd of cis and trans isomers differed by 22-fold; an incomplete isomerization (85%), however, resulted in the apparent difference of 4.5-fold between the dark and the irradiated state. We anticipate that the selection strategy described in this report can be used to find light-responsive ligands for many targets that do not have known natural ligands.


Assuntos
Compostos Azo/química , Bacteriófago M13/química , Compostos Macrocíclicos/química , Oligopeptídeos/química , Biblioteca de Peptídeos , Sequência de Aminoácidos , Compostos Azo/metabolismo , Ligantes , Luz , Compostos Macrocíclicos/metabolismo , Oligopeptídeos/metabolismo , Processos Fotoquímicos , Ligação Proteica , Estreptavidina/metabolismo
16.
J Am Soc Mass Spectrom ; 24(10): 1573-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23943432

RESUMO

The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (ß-D-Galp-(1→3)-ß-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-ß-D-Galp-(1→4)-ß-D-Glcp (GM1)) and corresponding glycosphingolipid (ß-D-Galp-(1→3)-ß-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-ß-D-Galp-(1→4)-ß-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)(n+) ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)(n-) ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)(n+/-) ions, as well as for deprotonated (S4 + 4Btl)(n-) ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)(n+) ions was observed as a minor pathway. The (S4 + 4Btl)(n+) ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)(15+) ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.


Assuntos
Íons/química , Complexos Multiproteicos/química , Oligossacarídeos/química , Sequência de Carboidratos , Toxina da Cólera/química , Gases/química , Íons/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Nanotecnologia , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
17.
J Am Soc Mass Spectrom ; 24(7): 988-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23702709

RESUMO

Intermolecular interactions in the gaseous ions of two protein-ligand complexes, a single chain antibody (scFv) and its trisaccharide ligand (α-D-Galp-(1→2)-[α-D-Abep-(1→3)]-α-Manp-OCH3, L1) and streptavidin homotetramer (S4) and biotin (B), were investigated using a collision-induced dissociation (CID)-functional group replacement (FGR) strategy. CID was performed on protonated ions of a series of structurally related complexes based on the (scFv + L1) and (S4 + 4B) complexes, at the +10 and +13 charge states, respectively. Intermolecular interactions were identified from decreases in the collision energy required to dissociate 50% of the reactant ion (Ec50) upon modification of protein residues or ligand functional groups. For the (scFv + L1)(10+) ion, it was found that deoxygenation of L1 (at Gal C3 and C6 and Man C4 and C6) or mutation of His101 (to Ala) resulted in a decrease in Ec50 values. These results suggest that the four hydroxyl groups and His101 participate in intermolecular H-bonds. These findings agree with those obtained using the blackbody infrared radiative dissociation (BIRD)-FGR method. However, the CID-FGR method failed to reveal the relative strengths of the intermolecular interactions or establish Man C4 OH and His101 as an H-bond donor/acceptor pair. The CID-FGR method correctly identified Tyr43, but not Ser27, Trp79, and Trp120, as a stabilizing contact in the (S4 + 4B)(13+) ion. In fact, mutation of Trp79 and Trp120 led to an increase in the Ec50 value. Taken together, these results suggest that the CID-FGR method, as implemented here, does not represent a reliable approach for identifying interactions in the gaseous protein-ligand complexes.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Cátions/química , Gases , Ligação de Hidrogênio , Raios Infravermelhos , Ligantes , Anticorpos de Cadeia Única/química , Estreptavidina/química , Trissacarídeos/química
18.
J Am Chem Soc ; 134(40): 16586-96, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22984964

RESUMO

Results of the first detailed study of the structure and kinetic stability of the model high-affinity protein-ligand interaction between biotin (B) and the homotetrameric protein complex streptavidin (S(4)) in the gas phase are described. Collision cross sections (Ω) measured for protonated gaseous ions of free and ligand-bound truncated (residues 13-139) wild-type (WT) streptavidin, i.e., S(4)(n+) and (S(4)+4B)(n+) at charge states n = 12-16, were found to be independent of charge state and in agreement (within 10%) with values estimated for crystal structures reported for S(4) and (S(4)+4B). These results suggest that significant structural changes do not occur upon transfer of the complexes from solution to the gas phase by electrospray ionization. Temperature-dependent rate constants were measured for the loss of B from the protonated (S(4)+4B)(n+) ions. Over the temperature range investigated, the kinetic stability increases with decreasing charge state, from n = 16 to 13, but is indistinguishable for n = 12 and 13. A comparison of the activation energies (E(a)) measured for the loss of B from the (S(4)+4B)(13+) ions composed of WT streptavidin and five binding site mutants (Trp79Phe, Trp108Phe, Trp120Phe, Ser27Ala, and Tyr43Ala) suggests that at least some of the specific intermolecular interactions are preserved in the gas phase. The results of molecular dynamics simulations performed on WT (S(4)+4B)(12+) ions with different charge configurations support this conclusion. The most significant finding of this study is that the gaseous WT (S(4)+4B)(n+) ions at n = 12-14, owing to a much larger E(a) (by as much as 13 kcal mol(-1)) for the loss of B, are dramatically more stable kinetically at 25 °C than the (S(4)+4B) complex in aqueous neutral solution. The differences in E(a) values measured for the gaseous (S(4)+4B)(n+) ions and solvated (S(4)+4B) complex can be largely accounted for by a late dissociative transition state and the rehydration of B and the protein binding cavity in solution.


Assuntos
Biotina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Estreptavidina/metabolismo , Streptomyces/metabolismo , Sítios de Ligação , Biotina/química , Gases/química , Gases/metabolismo , Íons/química , Íons/metabolismo , Cinética , Ligação Proteica , Multimerização Proteica , Estreptavidina/química , Streptomyces/química , Termodinâmica
19.
J Am Chem Soc ; 134(13): 5931-7, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22409493

RESUMO

Deuterium kinetic isotope effects (KIEs) are reported for the first time for the dissociation of a protein-ligand complex in the gas phase. Temperature-dependent rate constants were measured for the loss of neutral ligand from the deprotonated ions of the 1:1 complex of bovine ß-lactoglobulin (Lg) and palmitic acid (PA), (Lg + PA)(n-) → Lg(n-) + PA, at the 6- and 7- charge states. At 25 °C, partial or complete deuteration of the acyl chain of PA results in a measurable inverse KIE for both charge states. The magnitude of the KIEs is temperature dependent, and Arrhenius analysis of the rate constants reveals that deuteration of PA results in a decrease in activation energy. In contrast, there is no measurable deuterium KIE for the dissociation of the (Lg + PA) complex in aqueous solution at pH 8. Deuterium KIEs were calculated using conventional transition-state theory with an assumption of a late dissociative transition state (TS), in which the ligand is free of the binding pocket. The vibrational frequencies of deuterated and non-deuterated PA in the gas phase and in various solvents (n-hexane, 1-chlorohexane, acetone, and water) were established computationally. The KIEs calculated from the corresponding differences in zero-point energies account qualitatively for the observation of an inverse KIE but do not account for the magnitude of the KIEs nor their temperature dependence. It is proposed that the dissociation of the (Lg + PA) complex in aqueous solution also proceeds through a late TS in which the acyl chain is extensively hydrated such that there is no significant differential change in the vibrational frequencies along the reaction coordinate and, consequently, no significant KIE.


Assuntos
Deutério , Gases/química , Lactoglobulinas/química , Ácido Palmítico/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Cinética , Lactoglobulinas/metabolismo , Ácido Palmítico/metabolismo , Ligação Proteica , Solventes/química , Temperatura
20.
J Am Chem Soc ; 131(44): 15980-1, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19886690

RESUMO

The results of time-resolved thermal dissociation measurements and molecular dynamic simulations are reported for gaseous deprotonated ions of the specific complexes of bovine beta-lactoglobulin (Lg) and a series of the fatty acids (FA): CH(3)(CH(2))(x)COOH, where x = 10, 12, 14, and 16. At the reaction temperatures investigated, 25-66 degrees C, the gaseous ions dissociate exclusively by the loss of neutral FA. According to the kinetic data, and confirmed by ion mobility measurements, the (Lg + FA)(7-) ions exist in two, noninterconverting structures designated the fast (Lg + FA)(f)(7-) and slow (Lg + FA)(s)(7-) components. The Arrhenius parameters for both components are sensitive to the length of the FA aliphatic chain. For the fast components, the activation energy (E(a)) increases in a nearly linear fashion, with each methylene group contributing approximately 0.8 kcal mol(-1) to E(a). This is similar to the contribution of -CH(2)- groups to the solvation of n-alkanes in nonpolar solvents. Furthermore, the magnitude of the E(a) values for the fast components is similar to the solvation enthalpies expected for the FA aliphatic chains in nonpolar and weakly polar solvents. The E(a) values determined for the slow components are larger than those of the fast components. Furthermore, the E(a) values do not vary in a simple fashion with the length of the aliphatic chain. Molecular dynamics simulations performed on the (Lg + PA) complex revealed that, depending on the charge configuration, the (Lg + PA)(7-) ion can exist in two distinct structures, which differ primarily by the position of the EF loop. In the open structure the EF loop is positioned away from the entrance to the hydrophobic cavity and the ligand is stabilized only through nonpolar intermolecular interactions. In the closed structure the EF loop covers the entrance of the cavity and the carboxylic group of PA participates in H-bonds with residues on the EF loop or residues located at the entrance of the cavity. The loss of ligand from the closed structure would require both the cleavage of the H-bonds and the nonpolar contacts. Taken together, these results suggest that the aliphatic chain of the FA remains bound within the hydrophobic cavity in the gas phase (Lg + FA)(7-) ions. Furthermore, the barrier to dissociation of the (Lg + FA)(f)(7-) ions reflects predominantly the cleavage of the nonpolar intermolecular interactions, while for the (Lg + FA)(s)(7-) ions the FA is stabilized by both nonpolar interactions and H-bonds.


Assuntos
Ácidos Graxos/química , Gases/química , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química , Animais , Bovinos , Ligantes , Simulação de Dinâmica Molecular , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA