Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Cell Biol ; 24(9): 1407-1421, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097071

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically. The Rag GTPases, RagA or RagB bound to RagC or RagD, tether mTORC1 in a nutrient-dependent manner to lysosomes where mTORC1 becomes activated. Although the RagA and B paralogues were assumed to be functionally equivalent, we find here that the RagB isoforms, which are highly expressed in neurons, impart mTORC1 with resistance to nutrient starvation by inhibiting the RagA/B GTPase-activating protein GATOR1. We further show that high expression of RagB isoforms is observed in some tumours, revealing an alternative strategy by which cancer cells can retain elevated mTORC1 upon low nutrient availability.


Assuntos
Complexos Multiproteicos , Transdução de Sinais , Animais , Encéfalo/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Mol Ther Methods Clin Dev ; 23: 33-50, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553001

RESUMO

The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%-60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.

4.
Cell Rep ; 29(8): 2295-2306.e6, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747602

RESUMO

The death receptor CD95 is expressed in every cancer cell, thus providing a promising tool to target cancer. Activation of CD95 can, however, lead to apoptosis or proliferation. Yet the molecular determinants of CD95's mode of action remain unclear. Here, we identify an optimal distance between CD95Ligand molecules that enables specific clustering of receptor-ligand pairs, leading to efficient CD95 activation. Surprisingly, efficient CD95 activation leads to apoptosis in cancer cells in vitro and increased tumor growth in vivo. We show that allowing a 3D aggregation of cancer cells in vitro switches the apoptotic response to proliferation. Indeed, we demonstrate that the absence or presence of cell-cell contacts dictates the cell response to CD95. Cell contacts increase global levels of phosphorylated tyrosines, including CD95's tyrosine. A tyrosine-to-alanine CD95 mutant blocks proliferation in cells in contact. Our study sheds light into the regulatory mechanism of CD95 activation that can be further explored for anti-cancer therapies.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Humanos , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor fas/genética
5.
Cancer Res ; 79(9): 2298-2313, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30718358

RESUMO

Antiangiogenic therapy of glioblastoma (GBM) with bevacizumab, a VEGFA-blocking antibody, may accelerate tumor cell invasion and induce alternative angiogenic pathways. Here we investigate the roles of the proangiogenic apelin receptor APLNR and its cognate ligand apelin in VEGFA/VEGFR2 antiangiogenic therapy against distinct subtypes of GBM. In proneural GBM, apelin levels were downregulated by VEGFA or VEGFR2 blockade. A central role for apelin/APLNR in controlling GBM vascularization was corroborated in a serial implantation model of the angiogenic switch that occurs in human GBM. Apelin and APLNR are broadly expressed in human GBM, and knockdown or knockout of APLN in orthotopic models of proneural or classical GBM subtypes significantly reduced GBM vascularization compared with controls. However, reduction in apelin expression led to accelerated GBM cell invasion. Analysis of stereotactic GBM biopsies from patients as well as from in vitro and in vivo experiments revealed increased dissemination of APLNR-positive tumor cells when apelin levels were reduced. Application of apelin-F13A, a mutant APLNR ligand, blocked tumor angiogenesis and GBM cell invasion. Furthermore, cotargeting VEGFR2 and APLNR synergistically improved survival of mice bearing proneural GBM. In summary, we show that apelin/APLNR signaling controls GBM angiogenesis and invasion and that both pathologic features are blunted by apelin-F13A. We suggest that apelin-F13A can improve the efficiency and reduce the side effects of established antiangiogenic treatments for distinct GBM subtypes. SIGNIFICANCE: Pharmacologic targeting of the APLNR acts synergistically with established antiangiogenic treatments in glioblastoma and blunts therapy resistance to current strategies for antiangiogenesis.See related commentary by Amoozgar et al., p. 2104.


Assuntos
Glioblastoma , Adulto , Inibidores da Angiogênese , Animais , Apelina , Receptores de Apelina , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular
6.
Cancer Res ; 71(23): 7155-67, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22006998

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor that tends to be resistant to the ionizing radiotherapy used to treat it. Because TGF-ß is a modifier of radiation responses, we conducted a preclinical study of the antitumor effects of the TGF-ß receptor (TGFßR) I kinase inhibitor LY2109761 in combination with radiotherapy. LY2109761 reduced clonogenicity and increased radiosensitivity in GBM cell lines and cancer stem-like cells, augmenting the tumor growth delay produced by fractionated radiotherapy in a supra-additive manner in vivo. In an orthotopic intracranial model, LY2109761 significantly reduced tumor growth, prolonged survival, and extended the prolongation of survival induced by radiation treatment. Histologic analyses showed that LY2109761 inhibited tumor invasion promoted by radiation, reduced tumor microvessel density, and attenuated mesenchymal transition. Microarray-based gene expression analysis revealed signaling effects of the combinatorial treatments that supported an interpretation of their basis. Together, these results show that a selective inhibitor of the TGFßR-I kinase can potentiate radiation responses in glioblastoma by coordinately increasing apoptosis and cancer stem-like cells targeting while blocking DNA damage repair, invasion, mesenchymal transition, and angiogenesis. Our findings offer a sound rationale for positioning TGFßR kinase inhibitors as radiosensitizers to improve the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Pirazóis/farmacologia , Pirróis/farmacologia , Radiossensibilizantes/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Dano ao DNA , Reparo do DNA , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Análise em Microsséries/métodos , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteína Smad2/antagonistas & inibidores , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Acta Neuropathol ; 122(5): 637-50, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21863243

RESUMO

Incompletely resectable ependymomas are associated with poor prognosis despite intensive radio- and chemotherapy. Novel treatments have been difficult to develop due to the lack of appropriate models. Here, we report on the generation of a high-risk cytogenetic group 3 and molecular group C ependymoma model (DKFZ-EP1NS) which is based on primary ependymoma cells obtained from a patient with metastatic disease. This model displays stem cell features such as self-renewal capacity, differentiation capacity, and specific marker expression. In vivo transplantation showed high tumorigenic potential of these cells, and xenografts phenotypically recapitulated the original tumor in a niche-dependent manner. DKFZ-EP1NS cells harbor transcriptome plasticity, enabling a shift from a neural stem cell-like program towards a profile of primary ependymoma tumor upon in vivo transplantation. Serial transplantation of DKFZ-EP1NS cells from orthotopic xenografts yielded secondary tumors in half the time compared with the initial transplantation. The cells were resistant to temozolomide, vincristine, and cisplatin, but responded to histone deacetylase inhibitor (HDACi) treatment at therapeutically achievable concentrations. In vitro treatment of DKFZ-EP1NS cells with the HDACi Vorinostat induced neuronal differentiation associated with loss of stem cell-specific properties. In summary, this is the first ependymoma model of a cytogenetic group 3 and molecular subgroup C ependymoma based on a human cell line with stem cell-like properties, which we used to demonstrate the differentiation-inducing therapeutic potential of HDACi.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ependimoma/patologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Modelos Biológicos , Neoplasias Supratentoriais/patologia , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Técnicas In Vitro , Injeções Intraventriculares , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Fenótipo , Transplante Heterólogo , Vorinostat
8.
Immunity ; 32(2): 240-52, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20153221

RESUMO

Injury to the central nervous system initiates an uncontrolled inflammatory response that results in both tissue repair and destruction. Here, we showed that, in rodents and humans, injury to the spinal cord triggered surface expression of CD95 ligand (CD95L, FasL) on peripheral blood myeloid cells. CD95L stimulation of CD95 on these cells activated phosphoinositide 3-kinase (PI3K) and metalloproteinase-9 (MMP-9) via recruitment and activation of Syk kinase, ultimately leading to increased migration. Exclusive CD95L deletion in myeloid cells greatly decreased the number of neutrophils and macrophages infiltrating the injured spinal cord or the inflamed peritoneum after thioglycollate injection. Importantly, deletion of myeloid CD95L, but not of CD95 on neural cells, led to functional recovery of spinal injured animals. Our results indicate that CD95L acts on peripheral myeloid cells to induce tissue damage. Thus, neutralization of CD95L should be considered as a means to create a controlled beneficial inflammatory response.


Assuntos
Movimento Celular , Proteína Ligante Fas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Mieloides/metabolismo , Peritonite/imunologia , Proteínas Tirosina Quinases/metabolismo , Animais , Células Cultivadas , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Humanos , Inflamação , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/patologia , Peritônio/imunologia , Peritônio/patologia , Peritonite/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Medula Espinal/imunologia , Medula Espinal/patologia , Quinase Syk , Tioglicolatos/administração & dosagem
9.
Cell Stem Cell ; 5(2): 178-90, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19664992

RESUMO

Adult neurogenesis persists in the subventricular zone and the dentate gyrus and can be induced upon central nervous system injury. However, the final contribution of newborn neurons to neuronal networks is limited. Here we show that in neural stem cells, stimulation of the "death receptor" CD95 does not trigger apoptosis but unexpectedly leads to increased stem cell survival and neuronal specification. These effects are mediated via activation of the Src/PI3K/AKT/mTOR signaling pathway, ultimately leading to a global increase in protein translation. Induction of neurogenesis by CD95 was further confirmed in the ischemic CA1 region, in the naive dentate gyrus, and after forced expression of CD95L in the adult subventricular zone. Lack of hippocampal CD95 resulted in a reduction in neurogenesis and working memory deficits. Following global ischemia, CD95-mediated brain repair rescued behavioral impairment. Thus, we identify the CD95/CD95L system as an instructive signal for ongoing and injury-induced neurogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Proteína Ligante Fas/metabolismo , Neurogênese/fisiologia , Receptor fas/metabolismo , Células-Tronco Adultas/transplante , Animais , Isquemia Encefálica/terapia , Feminino , Expressão Gênica/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Transplante de Células-Tronco , Serina-Treonina Quinases TOR
10.
Glia ; 57(5): 561-81, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18942750

RESUMO

The role of microglia, the brain resident macrophages, in glioma biology is still ill-defined. Despite their cytotoxic potential, these cells that significantly infiltrate the tumor mass seem to support tumor growth rather than tumor eradication. A proper activation of microglia anti-tumor activities within the tumor may provide a valuable additional arm of defense to immunotherapies against brain tumors. We herewith report a detailed characterization of (lipopolysaccharide and interferon-gamma)-induced anti-tumor activities of mouse primary microglia towards two TNF-alpha and TRAIL resistant glioma cell lines, in cell monolayer or spheroid cultures and in collagen-embedded tumor explants. Irrespective of the mouse strain, stimulated microglia secreted proteic factors that decreased proliferation and migration of these glioma cells and efficiently killed them. Death occurred specifically in glioma cells as demonstrated by the lack of toxicity of microglia supernatant towards primary cultures of astrocytes or neurons. Cell death was characterized by the early accumulation of acidic vesicles, phosphatidylserine exposure, appearance of double-membrane cytoplasmic vesicles, extensive zeiosis and a very late loss of DNA in cells that had lost membrane integrity. Inhibition of autophagosome formation efficiently protected glioma cells from death whereas caspase inhibition could only prevent DNA loss but not cytotoxicity. Death however, resulted from a blockade by microglia supernatant of the basal autophagic flux present in the glioma cells. These observations demonstrate that glioma cells resistant to apoptotic death ligands could be successfully and specifically killed through autophagy-dependent death induced by appropriately activated microglia.


Assuntos
Autofagia , Glioma/patologia , Microglia/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Inibidores de Caspase , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Colágeno , DNA/metabolismo , Glioma/fisiopatologia , Técnicas In Vitro , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Oligopeptídeos/metabolismo , Fosfatidilserinas/metabolismo
11.
Cancer Cell ; 13(3): 235-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18328427

RESUMO

Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Ligante Fas/metabolismo , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Transdução de Sinais , Receptor fas/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-yes/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Transplante Isogênico , Células Tumorais Cultivadas , Quinases da Família src/metabolismo
12.
Arthritis Rheum ; 54(3): 939-50, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16511837

RESUMO

OBJECTIVE: To examine whether apoptosis contributes to the pathogenesis of skin lesions in patients with cutaneous lupus erythematosus (CLE) after ultraviolet (UV) irradiation. METHODS: In situ nick translation and TUNEL were performed to detect apoptosis in 85 skin biopsy specimens from patients with various subtypes of CLE. Specimens from normal healthy donors and patients with polymorphous light eruption were used as controls. In addition to assessment of primary lesions, provocative phototesting was carried out to investigate events occurring secondary to UV irradiation during a very early stage of lesion formation. RESULTS: A significant increase in apoptotic nuclei was found in the upper epidermal layer of primary and UV light-induced skin lesions of CLE patients compared with controls. In tissue sections obtained from control subjects at 24 hours after a single exposure to UV light, a slight increase in the count of epidermal apoptotic nuclei was present as compared with skin tissue from CLE patients obtained under the same conditions before lesion formation. In sections obtained from controls at 72 hours after irradiation, a significant decrease in the apoptotic nuclei count was observed, consistent with a proper clearance of apoptotic cells in the period between 24 and 72 hours after irradiation. In striking contrast, the number of apoptotic nuclei increased significantly within this period in tissue sections from patients with CLE. CONCLUSION: These data support the hypothesis that apoptotic cells accumulate in the skin of patients with CLE after UV irradiation, as a result of impaired or delayed clearance. The nonengulfed cells may undergo secondary necrosis and release proinflammatory compounds and potential autoantigens, which may contribute to the inflammatory micromilieu that leads to formation of skin lesions in this disease.


Assuntos
Apoptose , Epiderme/patologia , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Cutâneo/radioterapia , Terapia Ultravioleta , Adulto , Idoso , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Pessoa de Meia-Idade
13.
Nat Med ; 10(4): 389-95, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15004554

RESUMO

The clinical outcome of spinal cord injury (SCI) depends in part on the extent of secondary damage, to which apoptosis contributes. The CD95 and tumor necrosis factor (TNF) ligand/receptor systems play an essential role in various apoptotic mechanisms. To determine the involvement of these ligands in SCI-induced damage, we neutralized the activity of CD95 ligand (CD95L) and/or TNF in spinal cord-injured mice. Therapeutic neutralization of CD95L, but not of TNF, significantly decreased apoptotic cell death after SCI. Mice treated with CD95L-specific antibodies were capable of initiating active hind-limb movements several weeks after injury. The improvement in locomotor performance was mirrored by an increase in regenerating fibers and upregulation of growth-associated protein-43 (GAP-43). Thus, neutralization of CD95L promoted axonal regeneration and functional improvement in injured adult animals. This therapeutic strategy may constitute a potent future treatment for human spinal injury.


Assuntos
Axônios/fisiologia , Glicoproteínas de Membrana/antagonistas & inibidores , Regeneração , Traumatismos da Medula Espinal/fisiopatologia , Animais , Sobrevivência Celular , Proteína Ligante Fas , Camundongos , Neurônios/citologia , Testes de Neutralização , Oligodendroglia/citologia , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA