Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372158

RESUMO

Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.


Assuntos
Infertilidade Masculina/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Epididimo/imunologia , Epididimo/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Testículo/imunologia , Testículo/metabolismo
2.
Cell Host Microbe ; 28(2): 322-334.e5, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32544459

RESUMO

Induction of trained immunity by Bacille-Calmette-Guérin (BCG) vaccination mediates beneficial heterologous effects, but the mechanisms underlying its persistence and magnitude remain elusive. In this study, we show that BCG vaccination in healthy human volunteers induces a persistent transcriptional program connected to myeloid cell development and function within the hematopoietic stem and progenitor cell (HSPC) compartment in the bone marrow. We identify hepatic nuclear factor (HNF) family members 1a and b as crucial regulators of this transcriptional shift. These findings are corroborated by higher granulocyte numbers in BCG-vaccinated infants, HNF1 SNP variants that correlate with trained immunity, and elevated serum concentrations of the HNF1 target alpha-1 antitrypsin. Additionally, transcriptomic HSPC remodeling was epigenetically conveyed to peripheral CD14+ monocytes, displaying an activated transcriptional signature three months after BCG vaccination. Taken together, transcriptomic, epigenomic, and functional reprogramming of HSPCs and peripheral monocytes is a hallmark of BCG-induced trained immunity in humans.


Assuntos
Vacina BCG/imunologia , Granulócitos/citologia , Hematopoese/imunologia , Células-Tronco Hematopoéticas/citologia , Monócitos/citologia , Medula Óssea/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Citocinas/metabolismo , Feminino , Voluntários Saudáveis , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Monócitos/imunologia , Mycobacterium bovis/imunologia , Transcrição Gênica/genética , Transcriptoma/genética , Vacinação , Adulto Jovem , alfa 1-Antitripsina/sangue
3.
Nat Neurosci ; 23(3): 351-362, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32042176

RESUMO

Monocyte-derived and tissue-resident macrophages are ontogenetically distinct components of the innate immune system. Assessment of their respective functions in pathology is complicated by changes to the macrophage phenotype during inflammation. Here we find that Cxcr4-CreER enables permanent genetic labeling of hematopoietic stem cells (HSCs) and distinguishes HSC-derived monocytes from microglia and other tissue-resident macrophages. By combining Cxcr4-CreER-mediated lineage tracing with Cxcr4 inhibition or conditional Cxcr4 ablation in photothrombotic stroke, we find that Cxcr4 promotes initial monocyte infiltration and subsequent territorial restriction of monocyte-derived macrophages to infarct tissue. After transient focal ischemia, Cxcr4 deficiency reduces monocyte infiltration and blunts the expression of pattern recognition and defense response genes in monocyte-derived macrophages. This is associated with an altered microglial response and deteriorated outcomes. Thus, Cxcr4 is essential for an innate-immune-system-mediated defense response after cerebral ischemia. We further propose Cxcr4-CreER as a universal tool to study functions of HSC-derived cells.


Assuntos
Isquemia Encefálica/imunologia , Células-Tronco Hematopoéticas/imunologia , Microglia/imunologia , Monócitos/imunologia , Receptores CXCR4/metabolismo , Acidente Vascular Cerebral/imunologia , Animais , Isquemia Encefálica/patologia , Linhagem da Célula , Infarto Cerebral/imunologia , Infarto Cerebral/patologia , Células-Tronco Hematopoéticas/patologia , Imunidade Inata/genética , Ataque Isquêmico Transitório/imunologia , Ataque Isquêmico Transitório/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Monócitos/patologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Acidente Vascular Cerebral/patologia , Trombose/patologia , Resultado do Tratamento
4.
iScience ; 23(1): 100780, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31918046

RESUMO

Acute myeloid leukemia (AML) is a severe, mostly fatal hematopoietic malignancy. We were interested in whether transcriptomic-based machine learning could predict AML status without requiring expert input. Using 12,029 samples from 105 different studies, we present a large-scale study of machine learning-based prediction of AML in which we address key questions relating to the combination of machine learning and transcriptomics and their practical use. We find data-driven, high-dimensional approaches-in which multivariate signatures are learned directly from genome-wide data with no prior knowledge-to be accurate and robust. Importantly, these approaches are highly scalable with low marginal cost, essentially matching human expert annotation in a near-automated workflow. Our results support the notion that transcriptomics combined with machine learning could be used as part of an integrated -omics approach wherein risk prediction, differential diagnosis, and subclassification of AML are achieved by genomics while diagnosis could be assisted by transcriptomic-based machine learning.

5.
Cell Rep ; 29(5): 1221-1235.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665635

RESUMO

Tumor-associated macrophages (TAMs) are frequently the most abundant immune cells in cancers and are associated with poor survival. Here, we generated TAM molecular signatures from K14cre;Cdh1flox/flox;Trp53flox/flox (KEP) and MMTV-NeuT (NeuT) transgenic mice that resemble human invasive lobular carcinoma (ILC) and HER2+ tumors, respectively. Determination of TAM-specific signatures requires comparison with healthy mammary tissue macrophages to avoid overestimation of gene expression differences. TAMs from the two models feature a distinct transcriptomic profile, suggesting that the cancer subtype dictates their phenotype. The KEP-derived signature reliably correlates with poor overall survival in ILC but not in triple-negative breast cancer patients, indicating that translation of murine TAM signatures to patients is cancer subtype dependent. Collectively, we show that a transgenic mouse tumor model can yield a TAM signature relevant for human breast cancer outcome prognosis and provide a generalizable strategy for determining and applying immune cell signatures provided the murine model reflects the human disease.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Neoplasias Mamárias Animais/patologia , Transcrição Gênica , Animais , Carcinogênese/genética , Carcinogênese/patologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/genética , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fenótipo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Transcriptoma/genética , Resultado do Tratamento
6.
Immunity ; 47(6): 1051-1066.e12, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262348

RESUMO

Human in vitro generated monocyte-derived dendritic cells (moDCs) and macrophages are used clinically, e.g., to induce immunity against cancer. However, their physiological counterparts, ontogeny, transcriptional regulation, and heterogeneity remains largely unknown, hampering their clinical use. High-dimensional techniques were used to elucidate transcriptional, phenotypic, and functional differences between human in vivo and in vitro generated mononuclear phagocytes to facilitate their full potential in the clinic. We demonstrate that monocytes differentiated by macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF) resembled in vivo inflammatory macrophages, while moDCs resembled in vivo inflammatory DCs. Moreover, differentiated monocytes presented with profound transcriptomic, phenotypic, and functional differences. Monocytes integrated GM-CSF and IL-4 stimulation combinatorically and temporally, resulting in a mode- and time-dependent differentiation relying on NCOR2. Finally, moDCs are phenotypically heterogeneous and therefore necessitate the use of high-dimensional phenotyping to open new possibilities for better clinical tailoring of these cellular therapies.


Assuntos
Células Dendríticas/imunologia , Interleucina-4/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Correpressor 2 de Receptor Nuclear/imunologia , Transdução de Sinais/imunologia , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imunofenotipagem , Interleucina-4/genética , Interleucina-4/farmacologia , Ativação de Macrófagos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Correpressor 2 de Receptor Nuclear/genética , Cultura Primária de Células , Fatores de Tempo , Transcrição Gênica
7.
Oncoimmunology ; 6(4): e1295203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507805

RESUMO

Myeloid-derived suppressor cells (MDSC) are critical in regulating immune responses by suppressing antigen presenting cells (APC) and T cells. We previously observed that incubation of peripheral blood monocytes with interleukin (IL)-10 during their differentiation to monocyte-derived dendritic cells (moDCs) results in the generation of an APC population with a CD14+HLA-DRlowphenotype (IL-10-APC) with reduced stimulatory capacity similar to human MDSC. Co-incubation experiments now revealed that the addition of IL-10-APC to moDC caused a reduction of DC-induced T-cell proliferation, of the expression of maturation markers, and of secreted cytokines and chemokines such as TNF-α, IL-6, MIP-1α and Rantes. Addition of IL-10-APC increased the immunosuppressive molecule osteoactivin and its corresponding receptor syndecan-4 on moDC. Moreover, CD14+HLA-DRlow MDSC isolated from healthy donors expressed high levels of osteoactivin, which was even further upregulated by the auxiliary addition of IL-10. Using transcriptome analysis, we identified a set of molecules and pathways mediating these effects. In addition, we found that IL-10-APC as well as human isolated MDSC expressed higher levels of programmed death (PD)-1, PD-ligand-1 (PD-L1), glucocorticoid-induced-tumor-necrosis-factor-receptor-related-protein (GITR) and GITR-ligand. Inhibition of osteoactivin, syndecan-4, PD-1 or PD-L1 on MDSC by using blocking antibodies restored the stimulatory capacity of DC in co-incubation experiments. Activation of MDSC with Dectin-1 ligand curdlan reduced the expression of osteoactivin and PD-L1. Our results demonstrate that osteoactivin/syndecan-4 and PD-/PD-L1 are key molecules that are profoundly involved in the inhibitory effects of MDSC on DC function and might be promising tools for clinical application.

8.
Cell Res ; 26(2): 151-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26729620

RESUMO

Differentiation of inflammatory macrophages from monocytes is characterized by an orderly integration of epigenetic and transcriptional regulatory mechanisms guided by lineage-determining transcription factors such as PU.1. Further activation of macrophages leads to a stimulus- or microenvironment-specific signal integration with subsequent transcriptional control established by the action of tissue- or signal-associated transcription factors. Here, we assess four histone modifications during human macrophage activation and integrate this information with the gene expression data from 28 different macrophage activation conditions in combination with GM-CSF. Bioinformatically, for inflammatory macrophages we define a unique network of transcriptional and epigenetic regulators (TRs), which was characterized by accessible promoters independent of the activation signal. In contrast to the general accessibility of promoters of TRs, mRNA expression of central TRs belonging to the TR network displayed stimulus-specific expression patterns, indicating a second level of transcriptional regulation beyond epigenetic chromatin changes. In contrast, stringent integration of epigenetic and transcriptional regulation was observed in networks of TRs established from somatic tissues and tissue macrophages. In these networks, clusters of TRs with permissive histone marks were associated with high gene expression whereas clusters with repressive chromatin marks were associated with absent gene expression. Collectively, these results support that macrophage activation during inflammation in contrast to lineage determination is mainly regulated transcriptionally by a pre-defined TR network.


Assuntos
Cromatina/genética , Redes Reguladoras de Genes/genética , Inflamação/genética , Macrófagos/metabolismo , Animais , Epigênese Genética/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
9.
J Immunol ; 195(9): 4446-55, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416280

RESUMO

Cytokines and IFNs downstream of innate immune pathways are critical for mounting an appropriate immune response to microbial infection. However, the expression of these inflammatory mediators is tightly regulated, as uncontrolled production can result in tissue damage and lead to chronic inflammatory conditions and autoimmune diseases. Activating transcription factor 3 (ATF3) is an important transcriptional modulator that limits the inflammatory response by controlling the expression of a number of cytokines and chemokines. However, its role in modulating IFN responses remains poorly defined. In this study, we demonstrate that ATF3 expression in macrophages is necessary for governing basal IFN-ß expression, as well as the magnitude of IFN-ß cytokine production following activation of innate immune receptors. We found that ATF3 acted as a transcriptional repressor and regulated IFN-ß via direct binding to a previously unidentified specific regulatory site distal to the Ifnb1 promoter. Additionally, we observed that ATF3 itself is a type I IFN-inducible gene, and that ATF3 further modulates the expression of a subset of inflammatory genes downstream of IFN signaling, suggesting it constitutes a key component of an IFN negative feedback loop. Consistent with this, macrophages deficient in Atf3 showed enhanced viral clearance in lymphocytic choriomeningitis virus and vesicular stomatitis virus infection models. Our study therefore demonstrates an important role for ATF3 in modulating IFN responses in macrophages by controlling basal and inducible levels of IFNß, as well as the expression of genes downstream of IFN signaling.


Assuntos
Fator 3 Ativador da Transcrição/genética , Interferon beta/genética , Macrófagos/metabolismo , Transcriptoma/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Immunoblotting , Interferon beta/metabolismo , Interferon beta/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA