Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 3(1): 51, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041310

RESUMO

BACKGROUND: The clinical course of COVID-19 patients ranges from asymptomatic infection, via mild and moderate illness, to severe disease and even fatal outcome. Biomarkers which enable an early prediction of the severity of COVID-19 progression, would be enormously beneficial to guide patient care and early intervention prior to hospitalization. METHODS: Here we describe the identification of plasma protein biomarkers using an antibody microarray-based approach in order to predict a severe cause of a COVID-19 disease already in an early phase of SARS-CoV-2 infection. To this end, plasma samples from two independent cohorts were analyzed by antibody microarrays targeting up to 998 different proteins. RESULTS: In total, we identified 11 promising protein biomarker candidates to predict disease severity during an early phase of COVID-19 infection coherently in both analyzed cohorts. A set of four (S100A8/A9, TSP1, FINC, IFNL1), and two sets of three proteins (S100A8/A9, TSP1, ERBB2 and S100A8/A9, TSP1, IFNL1) were selected using machine learning as multimarker panels with sufficient accuracy for the implementation in a prognostic test. CONCLUSIONS: Using these biomarkers, patients at high risk of developing a severe or critical disease may be selected for treatment with specialized therapeutic options such as neutralizing antibodies or antivirals. Early therapy through early stratification may not only have a positive impact on the outcome of individual COVID-19 patients but could additionally prevent hospitals from being overwhelmed in potential future pandemic situations.


We aimed to identify components of the blood present during the early phase of SARS-CoV-2 infection that distinguish people who are likely to develop severe symptoms of COVID-19. Blood from people who later developed a mild or moderate course of disease were compared to blood from people who later had a severe or critical course of disease. Here, we identified a combination of three proteins that were present in the blood of patients with COVID-19 who later developed a severe or critical disease. Identifying the presence of these proteins in patients at an early stage of infection could enable physicians to treat these patients early on to avoid progression of the disease.

2.
Org Biomol Chem ; 20(47): 9368-9377, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36385673

RESUMO

A synthesis of the new tetracyclic scaffold ProM-19, which represents a XPP tripeptide unit frozen in a PPII helix conformation, was developed. As a key building block, N-Boc-protected ethyl (1S,3S,4R)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate was prepared through a diastereoselective aza-Diels-Alder reaction and subsequent hydrogenolytic removal of the chiral N-1-phenylethyl substituent under temporary protection of the double bond through dihydroxylation and reconstitution by Corey-Winter olefination. The target compound Boc-[ProM-19]-OMe was then prepared via subsequent peptide coupling and Ru-catalyzed ring-closing metathesis steps employing (S)-N-Boc-allylgylcine and cis-5-vinyl-proline methyl ester as additional building blocks. In addition, Ac-[2-Cl-Phe]-[Pro]-[ProM-19]-OMe was prepared by solution phase peptide synthesis as a potential ligand for the ena-VASP EVH1 domain.


Assuntos
Peptídeos , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 117(47): 29684-29690, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33184177

RESUMO

Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein-protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor ([Formula: see text] Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein-protein interaction involved in actin filament processing and cell migration.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Moléculas de Adesão Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Células Jurkat , Prolina/metabolismo , Ligação Proteica/efeitos dos fármacos , Peixe-Zebra
4.
J Med Chem ; 60(19): 8071-8082, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921993

RESUMO

Stapling of side chains to stabilize an α-helical structure has been generally associated with an increased uptake of CPPs. Here, we compare four amphiphilic stapled peptides with their linear counterparts in terms of their membrane binding and conformational features in order to correlate these with uptake efficiency and toxicological effects. The impact of lactam stapling was found to vary strongly with regard to the different aspects of peptide-membrane interactions. Nearly all stapled peptides caused less membrane perturbation (vesicle leakage, hemolysis, bacterial lysis) than their linear counterparts. In one case (MAP-1) where stapling enhanced α-helicity in aqueous and lipid environments, leakage was eliminated while cell uptake in HEK293 and HeLa cells remained high, which improved the overall characteristics. The other systems (DRIM, WWSP, KFGF) did not improve, however. The data suggest that cell uptake of amphipathic CPPs correlates with their adopted α-helix content in membranes rather than their helicity in solution.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Membrana Celular/metabolismo , Lactamas/síntese química , Lactamas/farmacologia , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Células HEK293 , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Lactamas/metabolismo , Membranas Artificiais , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
5.
Chemistry ; 21(23): 8464-70, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25906737

RESUMO

With the aim of developing polyproline type II helix (PPII) secondary-structure mimetics for the modulation of prolin-rich-mediated protein-protein interactions, the novel diproline mimetic ProM-2 was designed by bridging the two pyrrolidine rings of a diproline (Pro-Pro) unit through a Z-vinylidene moiety. This scaffold, which closely resembles a section of a PPII helix, was then stereoselectively synthesized by exploiting a ruthenium-catalyzed ring-closing metathesis (RCM) as a late key step. The required vinylproline building blocks, that is, (R)-N-Boc-2-vinylproline (Boc=tert-butyloxycarbonyl) and (S,S)-5-vinylproline-tert-butyl ester, were prepared on a gram scale as pure stereoisomers. The difficult peptide coupling of the sterically demanding building blocks was achieved in good yield and without epimerization by using 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU)/N,N-diisopropylethylamine (DIPEA). The RCM proceeded smoothly in the presence of the Grubbs II catalyst. Stereostructural assignments for several intermediates were secured by X-ray crystallography. As a proof of concept, it was shown that certain peptides containing ProM-2 exhibited improved (canonical) binding towards the Ena/VASP homology 1 (EVH1) domain as a relevant protein interaction target.


Assuntos
Peptídeos/química , Proteínas/química , Dipeptídeos/química , Peptidomiméticos , Conformação Proteica , Estereoisomerismo
6.
Cell ; 152(1-2): 316-26, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332763

RESUMO

We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the DCR is complementary to the charge pattern on the APH, suggesting that the protein can be "zipped up" by a ladder of seven salt bridges. The length of the resulting hairpin matches the lipid bilayer thickness, hence a transmembrane pore could self-assemble via intra- and intermolecular salt bridges. The steric feasibility was rationalized by molecular dynamics simulations, and experimental evidence was obtained by monitoring the monomer-oligomer equilibrium of specific charge mutants. Similar "charge zippers" are proposed for other membrane-associated proteins, e.g., the biofilm-inducing peptide TisB, the human antimicrobial peptide dermcidin, and the pestiviral E(RNS) protein.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Toxinas Bacterianas/química , Proteínas de Escherichia coli/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA